論文の概要: Creating a Cooperative AI Policymaking Platform through Open Source Collaboration
- arxiv url: http://arxiv.org/abs/2412.06936v1
- Date: Mon, 09 Dec 2024 19:25:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:39:45.883386
- Title: Creating a Cooperative AI Policymaking Platform through Open Source Collaboration
- Title(参考訳): オープンソースコラボレーションによる協力型AIポリシ作成プラットフォームの構築
- Authors: Aiden Lewington, Alekhya Vittalam, Anshumaan Singh, Anuja Uppuluri, Arjun Ashok, Ashrith Mandayam Athmaram, Austin Milt, Benjamin Smith, Charlie Weinberger, Chatanya Sarin, Christoph Bergmeir, Cliff Chang, Daivik Patel, Daniel Li, David Bell, Defu Cao, Donghwa Shin, Edward Kang, Edwin Zhang, Enhui Li, Felix Chen, Gabe Smithline, Haipeng Chen, Henry Gasztowtt, Hoon Shin, Jiayun Zhang, Joshua Gray, Khai Hern Low, Kishan Patel, Lauren Hannah Cooke, Marco Burstein, Maya Kalapatapu, Mitali Mittal, Raymond Chen, Rosie Zhao, Sameen Majid, Samya Potlapalli, Shang Wang, Shrenik Patel, Shuheng Li, Siva Komaragiri, Song Lu, Sorawit Siangjaeo, Sunghoo Jung, Tianyu Zhang, Valery Mao, Vikram Krishnakumar, Vincent Zhu, Wesley Kam, Xingzhe Li, Yumeng Liu,
- Abstract要約: 現在のインセンティブ構造と規制の遅れは、責任あるAI開発とデプロイメントを妨げる可能性がある。
これらの課題に対処するため、我々は大規模なマルチモーダルテキストと経済時系列基盤モデルの開発を提案する。
- 参考スコア(独自算出の注目度): 14.120384828192067
- License:
- Abstract: Advances in artificial intelligence (AI) present significant risks and opportunities, requiring improved governance to mitigate societal harms and promote equitable benefits. Current incentive structures and regulatory delays may hinder responsible AI development and deployment, particularly in light of the transformative potential of large language models (LLMs). To address these challenges, we propose developing the following three contributions: (1) a large multimodal text and economic-timeseries foundation model that integrates economic and natural language policy data for enhanced forecasting and decision-making, (2) algorithmic mechanisms for eliciting diverse and representative perspectives, enabling the creation of data-driven public policy recommendations, and (3) an AI-driven web platform for supporting transparent, inclusive, and data-driven policymaking.
- Abstract(参考訳): 人工知能(AI)の進歩は大きなリスクと機会をもたらし、社会的損害を軽減し、平等な利益を促進するために統治の改善を必要としている。
現在のインセンティブ構造と規制の遅れは、特に大きな言語モデル(LLM)の変革の可能性を考慮して、AI開発とデプロイメントの責任を損なう可能性がある。
これらの課題に対処するため,1)予測・意思決定の強化を目的とした経済・自然言語政策データを統合した大規模多モーダルテキスト・経済時系列基盤モデル,2)多言語・代表的視点を抽出し,データ駆動型公共政策レコメンデーションの作成を可能にするアルゴリズム機構,3)透明性・包括的・データ駆動型政策作成を支援するAI駆動型Webプラットフォームを提案する。
関連論文リスト
- Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Generative AI in EU Law: Liability, Privacy, Intellectual Property, and Cybersecurity [1.9806397201363817]
本稿では、欧州連合の文脈におけるジェネレーティブAIと大規模言語モデル(LLM)の法的および規制的意味について述べる。
責任、プライバシー、知的財産権、サイバーセキュリティの側面を分析する。
生成モデルの安全性とコンプライアンスを保証するためのレコメンデーションを提案している。
論文 参考訳(メタデータ) (2024-01-14T19:16:29Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Data Equity: Foundational Concepts for Generative AI [0.0]
GenAIは、デジタルとソーシャルのイノベーションを促進する大きな可能性を約束する。
GenAIは、技術へのアクセスと利用を民主化する可能性がある。
しかし、未確認のままでは、不平等が深まる可能性がある。
論文 参考訳(メタデータ) (2023-10-27T05:19:31Z) - Envisioning a Human-AI collaborative system to transform policies into
decision models [7.9231719294492065]
我々は、人力で読み取り可能なポリシールールと機械で実行可能なポリシールールの両方をスケールする上で、政府機関や政策専門家を支援するAIの巨大な可能性を探る。
我々は、ポリシー文書から、AI、NLP、知識グラフを用いた実行可能、解釈可能、標準化された決定モデルへのルートを短くするための、初期的アプローチを提案する。
オープンドメインの課題は数多くありますが、このポジションペーパーでは、人力で読み取り可能なポリシルールとマシン実行可能なポリシルールの両方をスケールする上で、政府機関や政策専門家を支援するAIの巨大な可能性について検討します。
論文 参考訳(メタデータ) (2022-11-01T18:29:48Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
AIエコノミストフレームワークは,2段階強化学習とデータ駆動型シミュレーションを用いて,効果的な,柔軟な,解釈可能なポリシー設計を可能にする。
RLを用いて訓練されたログリニア政策は、過去の結果と比較して、公衆衛生と経済の両面から社会福祉を著しく改善することがわかった。
論文 参考訳(メタデータ) (2021-08-06T01:30:41Z) - Towards Self-Regulating AI: Challenges and Opportunities of AI Model
Governance in Financial Services [11.333522345613819]
本稿では,金融サービス産業におけるAIモデルガバナンスの課題に焦点を当てる。
本稿では、ロバスト性とコンプライアンスのための自己規制を強化するためのシステムレベルフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-09T22:12:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。