論文の概要: Towards Responsible Governing AI Proliferation
- arxiv url: http://arxiv.org/abs/2412.13821v1
- Date: Wed, 18 Dec 2024 13:10:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:40.909007
- Title: Towards Responsible Governing AI Proliferation
- Title(参考訳): 責任を負うAIの増殖に向けて
- Authors: Edward Kembery,
- Abstract要約: 論文では、小規模で分散化されたオープンソースのAIモデルの台頭を期待するProliferation'パラダイムを紹介している。
これらの発展は、可能性があり、利益と新たなリスクの両方をもたらす可能性が高いことを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper argues that existing governance mechanisms for mitigating risks from AI systems are based on the `Big Compute' paradigm -- a set of assumptions about the relationship between AI capabilities and infrastructure -- that may not hold in the future. To address this, the paper introduces the `Proliferation' paradigm, which anticipates the rise of smaller, decentralized, open-sourced AI models which are easier to augment, and easier to train without being detected. It posits that these developments are both probable and likely to introduce both benefits and novel risks that are difficult to mitigate through existing governance mechanisms. The final section explores governance strategies to address these risks, focusing on access governance, decentralized compute oversight, and information security. Whilst these strategies offer potential solutions, the paper acknowledges their limitations and cautions developers to weigh benefits against developments that could lead to a `vulnerable world'.
- Abstract(参考訳): 本稿では、AIシステムからリスクを軽減するための既存のガバナンスメカニズムは、将来的には成立しないかもしれない‘Big Compute’パラダイム(AI能力とインフラストラクチャの関係に関する一連の仮定)に基づいている、と論じる。
この問題に対処するため,本稿では,より小型で分散化されたオープンソースAIモデルの台頭を期待する‘Proliferation’パラダイムを紹介した。
これらの開発は可能であり、既存のガバナンスメカニズムを緩和することが難しい、メリットと新たなリスクの両方を導入する可能性が高い、と氏は主張する。
最終章では、これらのリスクに対処するガバナンス戦略について、アクセスガバナンス、分散コンピューティング監視、情報セキュリティに焦点を当てている。
これらの戦略は潜在的な解決策を提供するが、論文は彼らの制限を認め、開発者は‘華やかな世界’につながる可能性のある開発に対するメリットを評価すべきだと警告する。
関連論文リスト
- Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
オープンエンドレスネス(Open-Endedness)とは、AIシステムが新規で多様なアーティファクトやソリューションを継続的に自律的に生成する能力である。
このポジションペーパーは、Open-Ended AIの本質的に動的で自己伝播的な性質は、重大な、未発見のリスクをもたらすと主張している。
論文 参考訳(メタデータ) (2025-02-06T21:32:07Z) - A Blockchain-Enabled Approach to Cross-Border Compliance and Trust [0.0]
本稿では,ブロックチェーンと分散台帳技術(DLT)を活用した,AIガバナンスの新しいアプローチを提案する。
ブロックチェーン、AI倫理、サイバーセキュリティの進歩を合成することにより、分散AIガバナンスフレームワークの包括的なロードマップを提供する。
論文 参考訳(メタデータ) (2025-01-15T22:19:34Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOSは、ブロックチェーン、スマートコントラクト、分散自律組織(DAO)など、Web3テクノロジを活用する分散ガバナンス(DeGov)モデルである。
AIエージェントのグローバルレジストリを確立し、動的リスク分類、比例監視、自動コンプライアンス監視を可能にする。
合理性、倫理的根拠、ゴールアライメントの哲学的原則を統合することで、ETHOSは信頼、透明性、参加的ガバナンスを促進するための堅牢な研究アジェンダを作ることを目指している。
論文 参考訳(メタデータ) (2024-12-22T18:01:49Z) - Protocol Learning, Decentralized Frontier Risk and the No-Off Problem [56.74434512241989]
私たちは第3のパラダイムであるプロトコル学習(Protocol Learning)を特定します。
このアプローチは、単一の集中型エンティティよりも桁違いに多くの計算資源を集約する可能性がある。
また、不均一で信頼性の低いノード、悪意のある参加者、インセンティブを維持するために抽出不可能なモデルの必要性、複雑なガバナンスのダイナミクスなど、新しい課題も導入されている。
論文 参考訳(メタデータ) (2024-12-10T19:53:50Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Liability regimes in the age of AI: a use-case driven analysis of the
burden of proof [1.7510020208193926]
人工知能(AI)を利用した新しいテクノロジーは、私たちの社会をより良く、破壊的に変革する可能性を秘めている。
しかし、安全と基本的権利の両方に潜在的なリスクをもたらす、これらの方法論の固有の特性に対する懸念が高まっている。
本稿では,これらの難易度を示す3つのケーススタディと,それらに到達するための方法論について述べる。
論文 参考訳(メタデータ) (2022-11-03T13:55:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。