論文の概要: Sequential Compression Layers for Efficient Federated Learning in Foundational Models
- arxiv url: http://arxiv.org/abs/2412.07021v1
- Date: Mon, 09 Dec 2024 22:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:45.037094
- Title: Sequential Compression Layers for Efficient Federated Learning in Foundational Models
- Title(参考訳): 基礎モデルにおける効率的なフェデレーション学習のための逐次圧縮層
- Authors: Navyansh Mahla, Sunny Gupta, Amit Sethi,
- Abstract要約: そこで我々は,LoRAに依存しない,新しい,シンプルで,より効率的なパラメータ効率の微調整法を提案する。
このソリューションは、連合型微調整におけるLoRAに関連するボトルネックに対処し、最近のLoRAベースのアプローチより優れている。
- 参考スコア(独自算出の注目度): 2.6733991338938026
- License:
- Abstract: Federated Learning (FL) has gained popularity for fine-tuning large language models (LLMs) across multiple nodes, each with its own private data. While LoRA has been widely adopted for parameter efficient federated fine-tuning, recent theoretical and empirical studies highlight its suboptimal performance in the federated learning context. In response, we propose a novel, simple, and more effective parameter-efficient fine-tuning method that does not rely on LoRA. Our approach introduces a small multi-layer perceptron (MLP) layer between two existing MLP layers the up proj (the FFN projection layer following the self-attention module) and down proj within the feed forward network of the transformer block. This solution addresses the bottlenecks associated with LoRA in federated fine tuning and outperforms recent LoRA-based approaches, demonstrating superior performance for both language models and vision encoders.
- Abstract(参考訳): Federated Learning (FL)は、複数のノードにまたがる細調整された大規模言語モデル(LLM)で人気を集めており、それぞれが独自のプライベートデータを持っている。
LoRAは、パラメータ効率の良いフェデレーションファインチューニングに広く採用されているが、最近の理論的および実証的研究は、フェデレーション学習の文脈におけるその準最適性能を強調している。
そこで本研究では,LoRAに依存しない,新しい,シンプルで,より効率的なパラメータ効率の微調整法を提案する。
提案手法では,トランスブロックのフィードフォワードネットワーク内の2つの既存のMLP層間に,アッププロj(自己アテンションモジュールに続くFFNプロジェクション層)とダウンプロj(ダウンプロジェクション層)という小さな多層パーセプトロン(MLP)層を導入する。
このソリューションは、フェデレートされた微調整におけるLoRAに関連するボトルネックに対処し、最近のLoRAベースのアプローチよりも優れた性能を示し、言語モデルとビジョンエンコーダの両方で優れた性能を示す。
関連論文リスト
- Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models [21.953204885495573]
本稿ではLow-Rank Adaptation (LoRA)を用いたFLフレームワークの収束と性能保証を批判的に分析する。
直接重み付けはLoRAベースの戦略よりも優れており、微調整モデルでは優れた性能が得られることを示す。
以上の結果から,GaLoreはFlexLoRAやFFA-LoRAといったフェデレートされたLoRA手法よりも,テキストや画像のモダリティにおいて優れた代替手段であることが示唆された。
論文 参考訳(メタデータ) (2024-10-30T15:23:44Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
ヘテロジニアスLoRAアダプタ上でのファインチューニングを可能にするFLORAと呼ばれる新しい手法を提案する。
我々のアプローチはノイズフリーであり、ヘテロジニアスなLoRAアダプタをシームレスにサポートしています。
論文 参考訳(メタデータ) (2024-09-09T18:21:23Z) - Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences [49.14535254003683]
PaLoRAは、タスク固有の低ランクアダプタでオリジナルのモデルを拡張する、新しいパラメータ効率の手法である。
実験の結果,PaLoRAは様々なデータセットでMTLとPFLのベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-10T21:25:51Z) - ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation [4.07532985236519]
本研究では,共有低ランク適応(ShareLoRA)を実装することにより,事前学習言語モデル(PLM)に対するPEFT(Efficient Fine Tuning)の最適化手法を提案する。
異なるレイヤにShareLoRAを戦略的にデプロイし、それを自己アテンションレイヤのクエリ、キー、バリューコンポーネントに適用することにより、トレーニングパラメータの数とメモリ使用量を大幅に削減します。
この結果から、ShareLoRAはパラメータ効率を効果的に向上し、異なる言語モデルアーキテクチャにおけるスケーラブルで高品質な性能を確保します。
論文 参考訳(メタデータ) (2024-06-16T02:52:28Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
本稿では,集中型LCMと下流エミュレータ間でトランスフォーマブロックを転送する代表的手法であるOffsite-Tuning(OFT)に焦点を当てる。
これらの観測にインスパイアされたCRaShは、LCMから改善エミュレータを導出するトレーニングフリー戦略であるClustering、Removing、Sharingを含む。
以上の結果から,CRaShとOFTの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T03:08:58Z) - pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA
Tuning [35.59830784463706]
フェデレートラーニング(FL)は、中央サーバーが複数の参加者(クライアント)を協調的に調整し、分散データをトレーニングする、新たな機械学習パラダイムである。
我々は,LoRAチューニング(pFedLoRA)に基づく,新規で効率的なモデル・ヘテロジニアス・パーソナライズド・ラーニング・フレームワークを提案する。
2つのベンチマークデータセットの実験では、pFedLoRAは6つの最先端ベースラインを上回っている。
論文 参考訳(メタデータ) (2023-10-20T05:24:28Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。