論文の概要: Enhancing radioisotope identification in gamma spectra with transfer learning
- arxiv url: http://arxiv.org/abs/2412.07069v1
- Date: Tue, 10 Dec 2024 00:21:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:35:39.072895
- Title: Enhancing radioisotope identification in gamma spectra with transfer learning
- Title(参考訳): 移動学習によるガンマスペクトルのラジオアイソトープ同定の促進
- Authors: Peter Lalor,
- Abstract要約: 我々は、物理的に導出された合成データを用いてモデルを事前訓練し、転送学習技術を利用して特定の対象領域のモデルを微調整する。
この分析結果から、微調整モデルの方が、合成データや対象ドメインデータのみにのみ訓練されたモデルよりも大幅に優れていたことが示唆された。
本研究は,実験データへのアクセスが制限されたアプリケーションシナリオに伝達学習技術を適用するための概念実証として機能する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning methods in gamma spectroscopy have the potential to provide accurate, real-time classification of unknown radioactive samples. However, obtaining sufficient experimental training data is often prohibitively expensive and time-consuming, and models trained solely on synthetic data can struggle to generalize to the unpredictable range of real-world operating scenarios. In this work, we pretrain a model using physically derived synthetic data and subsequently leverage transfer learning techniques to fine-tune the model for a specific target domain. This paradigm enables us to embed physical principles during the pretraining step, thus requiring less data from the target domain compared to classical machine learning methods. Results of this analysis indicate that fine-tuned models significantly outperform those trained exclusively on synthetic data or solely on target-domain data, particularly in the intermediate data regime (${\approx} 10^4$ training samples). This conclusion is consistent across four different machine learning architectures (MLP, CNN, Transformer, and LSTM) considered in this study. This research serves as proof of concept for applying transfer learning techniques to application scenarios where access to experimental data is limited.
- Abstract(参考訳): ガンマ分光法における機械学習手法は、未知の放射性試料の正確なリアルタイム分類を提供する可能性がある。
しかし、十分な実験データを得ることは、しばしば高価で時間を要することがあり、合成データのみに訓練されたモデルは、予測不可能な現実の操作シナリオに一般化するのに苦労する。
本研究では、物理的に導出された合成データを用いてモデルを事前訓練し、その後、転送学習技術を利用して特定の対象領域のモデルを微調整する。
このパラダイムにより、事前学習中に物理原理を組み込むことができ、古典的な機械学習手法に比べてターゲット領域のデータが少ない。
この分析の結果、微調整されたモデルは、特に中間データ体制において、合成データや対象ドメインデータのみにのみ訓練されたモデルよりも大幅に優れていた({\approx} 10^4$ トレーニングサンプル)。
この結論は、この研究で考慮された4つの異なる機械学習アーキテクチャ(MLP、CNN、Transformer、LSTM)で一致している。
本研究は,実験データへのアクセスが制限されたアプリケーションシナリオに伝達学習技術を適用するための概念実証として機能する。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines [0.0]
本研究の目的は、新たに開発された物理情報機械学習(PIML)を用いて、残りの実用寿命(RUL)航空機エンジンの予測モデルを開発することである。
本稿では,NASAのC-MAPSS(Commercial Modular Aero-Propulsion System Simulation System)データについて概説する。
C-MAPSSは、古典的および深層学習手法でRUL予測に対処する、文献における多くの既存の研究を含む、よく研究されたデータセットである。
論文 参考訳(メタデータ) (2024-06-21T19:55:34Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - A Data-Driven Method for Automated Data Superposition with Applications
in Soft Matter Science [0.0]
我々は任意の座標変換で実験データを重畳するデータ駆動非パラメトリック法を開発した。
本手法は, 材料分類, 設計, 発見などの応用を通知する, 解釈可能なデータ駆動モデルを生成する。
論文 参考訳(メタデータ) (2022-04-20T14:58:04Z) - Bridge Data Center AI Systems with Edge Computing for Actionable
Information Retrieval [0.5652468989804973]
現代のシンクロトロンおよびX線自由電子レーザーにおける高いデータレートは、データ還元、特徴検出、その他の目的のために機械学習手法の使用を動機付けている。
ここでは、この目的のために、特別なデータセンターAIシステムがどのように使用できるかを説明します。
論文 参考訳(メタデータ) (2021-05-28T16:47:01Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Evaluation of synthetic and experimental training data in supervised
machine learning applied to charge state detection of quantum dots [0.0]
シミュレーションおよび実験データに基づいて学習した機械学習モデルの予測精度を評価する。
分類器は、純粋に実験的なデータと、合成訓練データと実験訓練データの組み合わせの両方で最適であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T23:41:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。