A Review of Human Emotion Synthesis Based on Generative Technology
- URL: http://arxiv.org/abs/2412.07116v1
- Date: Tue, 10 Dec 2024 02:06:10 GMT
- Title: A Review of Human Emotion Synthesis Based on Generative Technology
- Authors: Fei Ma, Yukan Li, Yifan Xie, Ying He, Yi Zhang, Hongwei Ren, Zhou Liu, Wei Yao, Fuji Ren, Fei Richard Yu, Shiguang Ni,
- Abstract summary: Human emotion synthesis is a crucial aspect of affective computing.
It involves using computational methods to mimic and convey human emotions through various modalities.
Recent advancements in generative models have significantly contributed to the development of this field.
- Score: 14.92674135999986
- License:
- Abstract: Human emotion synthesis is a crucial aspect of affective computing. It involves using computational methods to mimic and convey human emotions through various modalities, with the goal of enabling more natural and effective human-computer interactions. Recent advancements in generative models, such as Autoencoders, Generative Adversarial Networks, Diffusion Models, Large Language Models, and Sequence-to-Sequence Models, have significantly contributed to the development of this field. However, there is a notable lack of comprehensive reviews in this field. To address this problem, this paper aims to address this gap by providing a thorough and systematic overview of recent advancements in human emotion synthesis based on generative models. Specifically, this review will first present the review methodology, the emotion models involved, the mathematical principles of generative models, and the datasets used. Then, the review covers the application of different generative models to emotion synthesis based on a variety of modalities, including facial images, speech, and text. It also examines mainstream evaluation metrics. Additionally, the review presents some major findings and suggests future research directions, providing a comprehensive understanding of the role of generative technology in the nuanced domain of emotion synthesis.
Related papers
- Enhancing Human-Like Responses in Large Language Models [0.0]
We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems.
The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns.
arXiv Detail & Related papers (2025-01-09T07:44:06Z) - MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
This study introduces MEMO-Bench, a comprehensive benchmark consisting of 7,145 portraits, each depicting one of six different emotions.
Results demonstrate that existing T2I models are more effective at generating positive emotions than negative ones.
Although MLLMs show a certain degree of effectiveness in distinguishing and recognizing human emotions, they fall short of human-level accuracy.
arXiv Detail & Related papers (2024-11-18T02:09:48Z) - Generative Technology for Human Emotion Recognition: A Scope Review [11.578408396744237]
This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024.
It will introduce the mathematical principles of different generative models and the commonly used datasets.
It will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities.
arXiv Detail & Related papers (2024-07-04T05:22:55Z) - ReGenNet: Towards Human Action-Reaction Synthesis [87.57721371471536]
We analyze the asymmetric, dynamic, synchronous, and detailed nature of human-human interactions.
We propose the first multi-setting human action-reaction benchmark to generate human reactions conditioned on given human actions.
arXiv Detail & Related papers (2024-03-18T15:33:06Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Synthesizing Affective Neurophysiological Signals Using Generative
Models: A Review Paper [28.806992102323324]
The integration of emotional intelligence in machines is an important step in advancing human-computer interaction.
The scarcity of public affective datasets presents a challenge.
We emphasize the use of generative models to address this issue in neurophysiological signals.
arXiv Detail & Related papers (2023-06-05T08:38:30Z) - Mimetic Models: Ethical Implications of AI that Acts Like You [5.843033621853535]
An emerging theme in artificial intelligence research is the creation of models to simulate the decisions and behavior of specific people.
We develop a framework for characterizing the ethical and social issues raised by their growing availability.
arXiv Detail & Related papers (2022-07-19T16:41:36Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective.
We begin with commonly used emotion representation models from psychology.
We then define the key computational problems that the researchers have been trying to solve.
arXiv Detail & Related papers (2021-03-19T13:33:34Z) - Generative Adversarial Networks in Human Emotion Synthesis:A Review [0.0]
Deep generative models have become an emerging topic in various research areas like computer vision and signal processing.
Affective computing observed a rapid derivation of generative models during the last two decades.
Facial expression synthesis, speech emotion synthesis, and the audio-visual (cross-modal) emotion synthesis is reviewed extensively.
arXiv Detail & Related papers (2020-10-28T16:45:36Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.