MPSI: Mamba enhancement model for pixel-wise sequential interaction Image Super-Resolution
- URL: http://arxiv.org/abs/2412.07222v1
- Date: Tue, 10 Dec 2024 06:18:29 GMT
- Title: MPSI: Mamba enhancement model for pixel-wise sequential interaction Image Super-Resolution
- Authors: Yuchun He, Yuhan He,
- Abstract summary: Single image super-resolution (SR) has long posed a challenge in the field of computer vision.
We propose the Mamba pixel-wise sequential interaction network (MPSI) to enhance the establishment of long-range connections of information.
MPSI outperforms existing super-resolution methods in terms of image reconstruction results.
- Score: 0.0
- License:
- Abstract: Single image super-resolution (SR) has long posed a challenge in the field of computer vision. While the advent of deep learning has led to the emergence of numerous methods aimed at tackling this persistent issue, the current methodologies still encounter challenges in modeling long sequence information, leading to limitations in effectively capturing the global pixel interactions. To tackle this challenge and achieve superior SR outcomes, we propose the Mamba pixel-wise sequential interaction network (MPSI), aimed at enhancing the establishment of long-range connections of information, particularly focusing on pixel-wise sequential interaction. We propose the Channel-Mamba Block (CMB) to capture comprehensive pixel interaction information by effectively modeling long sequence information. Moreover, in the existing SR methodologies, there persists the issue of the neglect of features extracted by preceding layers, leading to the loss of valuable feature information. While certain existing models strive to preserve these features, they frequently encounter difficulty in establishing connections across all layers. To overcome this limitation, MPSI introduces the Mamba channel recursion module (MCRM), which maximizes the retention of valuable feature information from early layers, thereby facilitating the acquisition of pixel sequence interaction information from multiple-level layers. Through extensive experimentation, we demonstrate that MPSI outperforms existing super-resolution methods in terms of image reconstruction results, attaining state-of-the-art performance.
Related papers
- COMO: Cross-Mamba Interaction and Offset-Guided Fusion for Multimodal Object Detection [9.913133285133998]
Single-modal object detection tasks often experience performance degradation when encountering diverse scenarios.
multimodal object detection tasks can offer more comprehensive information about object features by integrating data from various modalities.
In this paper, we propose a novel approach called the CrOss-Mamba interaction and Offset-guided fusion framework.
arXiv Detail & Related papers (2024-12-24T01:14:48Z) - MLLA-UNet: Mamba-like Linear Attention in an Efficient U-Shape Model for Medical Image Segmentation [6.578088710294546]
Traditional segmentation methods struggle to address challenges such as high anatomical variability, blurred tissue boundaries, low organ contrast, and noise.
We propose MLLA-UNet (Mamba-Like Linear Attention UNet), a novel architecture that achieves linear computational complexity while maintaining high segmentation accuracy.
Experiments demonstrate that MLLA-UNet achieves state-of-the-art performance on six challenging datasets with 24 different segmentation tasks, including but not limited to FLARE22, AMOS CT, and ACDC, with an average DSC of 88.32%.
arXiv Detail & Related papers (2024-10-31T08:54:23Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Prior-Induced Information Alignment for Image Matting [28.90998570043986]
We propose a novel network named Prior-Induced Information Alignment Matting Network (PIIAMatting)
It can efficiently model the distinction of pixel-wise response maps and the correlation of layer-wise feature maps.
PIIAMatting performs favourably against state-of-the-art image matting methods on the Alphamatting.com, Composition-1K and Distinctions-646 dataset.
arXiv Detail & Related papers (2021-06-28T07:46:59Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.