A Dynamical Systems-Inspired Pruning Strategy for Addressing Oversmoothing in Graph Neural Networks
- URL: http://arxiv.org/abs/2412.07243v1
- Date: Tue, 10 Dec 2024 07:07:06 GMT
- Title: A Dynamical Systems-Inspired Pruning Strategy for Addressing Oversmoothing in Graph Neural Networks
- Authors: Biswadeep Chakraborty, Harshit Kumar, Saibal Mukhopadhyay,
- Abstract summary: Oversmoothing in Graph Neural Networks (GNNs) poses a significant challenge as network depth increases.
We identify the root causes of oversmoothing and propose textbftextitDYNAMO-GAT.
Our theoretical analysis reveals how DYNAMO-GAT disrupts the convergence to oversmoothed states.
- Score: 18.185834696177654
- License:
- Abstract: Oversmoothing in Graph Neural Networks (GNNs) poses a significant challenge as network depth increases, leading to homogenized node representations and a loss of expressiveness. In this work, we approach the oversmoothing problem from a dynamical systems perspective, providing a deeper understanding of the stability and convergence behavior of GNNs. Leveraging insights from dynamical systems theory, we identify the root causes of oversmoothing and propose \textbf{\textit{DYNAMO-GAT}}. This approach utilizes noise-driven covariance analysis and Anti-Hebbian principles to selectively prune redundant attention weights, dynamically adjusting the network's behavior to maintain node feature diversity and stability. Our theoretical analysis reveals how DYNAMO-GAT disrupts the convergence to oversmoothed states, while experimental results on benchmark datasets demonstrate its superior performance and efficiency compared to traditional and state-of-the-art methods. DYNAMO-GAT not only advances the theoretical understanding of oversmoothing through the lens of dynamical systems but also provides a practical and effective solution for improving the stability and expressiveness of deep GNNs.
Related papers
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Improving Graph Machine Learning Performance Through Feature Augmentation Based on Network Control Theory [3.2505793054002963]
Graph Neural Networks (GNNs) have demonstrated exceptional utility in various network-based learning tasks.
Many real-world systems may lack node-level information, posing a challenge for GNNs.
We introduce a novel approach, NCT-based Enhanced Feature Augmentation (NCT-EFA), that assimilates average controllability, along with other centrality indices, into the feature augmentation pipeline to enhance GNNs performance.
arXiv Detail & Related papers (2024-05-03T19:11:54Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach [12.856220339384269]
Graph Neural Networks (GNNs) have established themselves as a key component in addressing diverse graph-based tasks.
Despite their notable successes, GNNs remain susceptible to input perturbations in the form of adversarial attacks.
This paper introduces an innovative approach to fortify GNNs against adversarial perturbations through the lens of coupled dynamical systems.
arXiv Detail & Related papers (2023-11-12T20:06:48Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Graph-Coupled Oscillator Networks [23.597444325599835]
Graph-Coupled Networks (GraphCON) is a novel framework for deep learning on graphs.
We show that our framework offers competitive performance with respect to the state-of-the-art on a variety of graph-based learning tasks.
arXiv Detail & Related papers (2022-02-04T18:29:49Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
We introduce the framework of continuous-depth graph neural networks (GNNs)
Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs.
Results prove the effectiveness of the proposed models across applications, such as traffic forecasting or prediction in genetic regulatory networks.
arXiv Detail & Related papers (2021-06-22T07:30:35Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.