Attentional Graph Neural Network Is All You Need for Robust Massive Network Localization
- URL: http://arxiv.org/abs/2311.16856v3
- Date: Mon, 07 Apr 2025 07:39:56 GMT
- Title: Attentional Graph Neural Network Is All You Need for Robust Massive Network Localization
- Authors: Wenzhong Yan, Feng Yin, Juntao Wang, Geert Leus, Abdelhak M. Zoubir, Yang Tian,
- Abstract summary: We design Graph Neural Networks (GNNs) with attention mechanisms to tackle an important yet challenging nonlinear regression problem: massive network localization.<n>We first review our previous network localization method based on Graph Convolutional Network (GCN)<n>As an extension, we propose a specially designed Attentional GNN (AGNN) model to resolve the sensitive thresholding issue of the GCN-based method.
- Score: 26.85290529046327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we design Graph Neural Networks (GNNs) with attention mechanisms to tackle an important yet challenging nonlinear regression problem: massive network localization. We first review our previous network localization method based on Graph Convolutional Network (GCN), which can exhibit state-of-the-art localization accuracy, even under severe Non-Line-of-Sight (NLOS) conditions, by carefully preselecting a constant threshold for determining adjacency. As an extension, we propose a specially designed Attentional GNN (AGNN) model to resolve the sensitive thresholding issue of the GCN-based method and enhance the underlying model capacity. The AGNN comprises an Adjacency Learning Module (ALM) and Multiple Graph Attention Layers (MGAL), employing distinct attention architectures to systematically address the demerits of the GCN-based method, rendering it more practical for real-world applications. Comprehensive analyses are conducted to explain the superior performance of these methods, including a theoretical analysis of the AGNN's dynamic attention property and computational complexity, along with a systematic discussion of their robust characteristic against NLOS measurements. Extensive experimental results demonstrate the effectiveness of the GCN-based and AGNN-based network localization methods. Notably, integrating attention mechanisms into the AGNN yields substantial improvements in localization accuracy, approaching the fundamental lower bound and showing approximately 37\% to 53\% reduction in localization error compared to the vanilla GCN-based method across various NLOS noise configurations. Both methods outperform all competing approaches by far in terms of localization accuracy, robustness, and computational time, especially for considerably large network sizes.
Related papers
- A General Recipe for Contractive Graph Neural Networks -- Technical Report [4.14360329494344]
Graph Neural Networks (GNNs) have gained significant popularity for learning representations of graph-structured data.
GNNs often face challenges related to stability, generalization, and robustness to noise and adversarial attacks.
This paper presents a novel method for inducing contractive behavior in any GNN through SVD regularization.
arXiv Detail & Related papers (2024-11-04T00:05:21Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - Spatiotemporal Learning on Cell-embedded Graphs [6.8090864965073274]
We introduce a learnable cell attribution to the node-edge message passing process, which better captures the spatial dependency of regional features.
Experiments on various PDE systems and one real-world dataset demonstrate that CeGNN achieves superior performance compared with other baseline models.
arXiv Detail & Related papers (2024-09-26T16:22:08Z) - Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
spiking neural networks (SNNs) have attracted substantial interest due to their potential to replicate the energy-efficient and event-driven processing of neurons.
This work examines the unique properties and benefits of spiking dynamics in enhancing graph representation learning.
We propose a spike-based graph neural network model that incorporates spiking dynamics, enhanced by a novel spatial-temporal feature normalization (STFN) technique.
arXiv Detail & Related papers (2024-07-30T02:53:26Z) - SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning [42.716744098170835]
We propose a novel framework named Spike-induced Graph Neural Network (SiGNN) for learning enhanced spatialtemporal representations on dynamic graphs.
Benefiting from the TA mechanism, SiGNN not only effectively exploits the temporal dynamics of SNNs but also adeptly circumvents the representational constraints imposed by the binary nature of spikes.
Extensive experiments on various real-world dynamic graph datasets demonstrate the superior performance of SiGNN in the node classification task.
arXiv Detail & Related papers (2024-03-11T05:19:43Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
Deep learning has been successfully adopted in mobile edge computing (MEC) to optimize task offloading and resource allocation.
The dynamics of edge networks raise two challenges in neural network (NN)-based optimization methods: low scalability and high training costs.
In this paper, a novel link-output GNN (LOGNN)-based resource management approach is proposed to flexibly optimize the resource allocation in MEC.
arXiv Detail & Related papers (2023-06-15T08:21:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective [22.82625446308785]
We propose a novel view for understanding graph neural networks (GNNs)
In this work, we focus on deep GNNs and propose a novel view for understanding them.
We design a more powerful GNN: coupling graph neural network (CoGNet)
arXiv Detail & Related papers (2023-01-25T12:02:12Z) - PyGFI: Analyzing and Enhancing Robustness of Graph Neural Networks
Against Hardware Errors [3.2780036095732035]
Graph neural networks (GNNs) have emerged as a promising learning paradigm in learning graph-structured data.
This paper conducts a large-scale and empirical study of GNN resilience, aiming to understand the relationship between hardware faults and GNN accuracy.
arXiv Detail & Related papers (2022-12-07T06:14:14Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection.
GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning.
We present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process.
arXiv Detail & Related papers (2022-07-14T10:59:39Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Towards an Efficient and General Framework of Robust Training for Graph
Neural Networks [96.93500886136532]
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks.
Despite GNNs' impressive performance, it has been observed that carefully crafted perturbations on graph structures lead them to make wrong predictions.
We propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs.
arXiv Detail & Related papers (2020-02-25T15:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.