Control, competition and coexistence of effective magnetic orders by interactions in Bose-Einstein condensates with high-Q cavities
- URL: http://arxiv.org/abs/2412.07250v1
- Date: Tue, 10 Dec 2024 07:20:26 GMT
- Title: Control, competition and coexistence of effective magnetic orders by interactions in Bose-Einstein condensates with high-Q cavities
- Authors: Brahyam Ríos-Sánchez, Santiago F. Caballero-Benítez,
- Abstract summary: We show that atomic many-body interactions allow additional control in the cavity driven self-organization of effective spinor Bose-Einstein condensates.
It is possible to tailor on demand configurations possibly useful for analog quantum simulation of magnetic materials.
- Score: 0.0
- License:
- Abstract: Ultracold atom systems confined in optical cavities have been demonstrated as a laboratory for the control of quantum matter properties and analog quantum simulation. Often neglected, but soon amenable to manipulation in a new generation of experiments, we show that atomic many-body interactions allow additional control in the cavity driven self-organization of effective spinor Bose-Einstein condensates (BEC). We theoretically show that a rich landscape of magnetic ordering configurations emerges. This can be controlled by modifying the geometry of the light-fields in the system with the interplay of two-body interactions and the cavity induced interactions. This leads to competition scenarios and phase separated dynamics. Our results show that it is possible to tailor on demand configurations possibly useful for analog quantum simulation of magnetic materials with highly controllable parameters in a single experimentally realistic setup.
Related papers
- Laser-painted cavity-mediated interactions in a quantum gas [0.0]
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems.
Here we propose an experimental scheme employing laser-painted cavity-mediated interactions.
Our approach combines the versatility of cavity quantum electrodynamics with the precision of laser manipulation.
arXiv Detail & Related papers (2024-05-13T06:13:16Z) - Controlling the interactions in a cold atom quantum impurity system [0.0]
We implement an experimental architecture in which a single atom of K is trapped in an optical tweezer, and is immersed in a bath of Rb atoms at ultralow temperatures.
We concentrate on the characterization and control of the interactions between the two subsystems.
Our results open a range of new possibilities in quantum simulations of quantum impurity models, quantum information, and quantum thermodynamics.
arXiv Detail & Related papers (2023-10-04T12:37:17Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z) - A Chirality-Based Quantum Leap [46.53135635900099]
Chiral degrees of freedom occur in matter and in electromagnetic fields.
Recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials.
arXiv Detail & Related papers (2020-08-31T22:47:39Z) - Feedback Induced Magnetic Phases in Binary Bose-Einstein Condensates [0.0]
We develop a theoretical toolbox for quantum feedback control of Bose-Einstein condensates.
Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful new tool for quantum engineering in cold-atom systems.
arXiv Detail & Related papers (2020-07-14T18:00:15Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.