ConceptSearch: Towards Efficient Program Search Using LLMs for Abstraction and Reasoning Corpus (ARC)
- URL: http://arxiv.org/abs/2412.07322v2
- Date: Wed, 11 Dec 2024 06:33:55 GMT
- Title: ConceptSearch: Towards Efficient Program Search Using LLMs for Abstraction and Reasoning Corpus (ARC)
- Authors: Kartik Singhal, Gautam Shroff,
- Abstract summary: ConceptSearch is a novel function-search algorithm that uses concept-based scoring to guide the search efficiently.
Experimental results demonstrate the effectiveness of ConceptSearch, achieving a significant performance improvement over direct prompting.
These findings highlight the potential of LLM-driven program search when integrated with concept-based guidance.
- Score: 5.333409383920058
- License:
- Abstract: The Abstraction and Reasoning Corpus (ARC) poses a significant challenge to artificial intelligence, demanding broad generalization and few-shot learning capabilities that remain elusive for current deep learning methods, including large language models (LLMs). While LLMs excel in program synthesis, their direct application to ARC yields limited success. To address this, we introduce ConceptSearch, a novel function-search algorithm that leverages LLMs for program generation and employs a concept-based scoring method to guide the search efficiently. Unlike simplistic pixel-based metrics like Hamming distance, ConceptSearch evaluates programs on their ability to capture the underlying transformation concept reflected in the input-output examples. We explore three scoring functions: Hamming distance, a CNN-based scoring function, and an LLM-based natural language scoring function. Experimental results demonstrate the effectiveness of ConceptSearch, achieving a significant performance improvement over direct prompting with GPT-4. Moreover, our novel concept-based scoring exhibits up to 30% greater efficiency compared to Hamming distance, measured in terms of the number of iterations required to reach the correct solution. These findings highlight the potential of LLM-driven program search when integrated with concept-based guidance for tackling challenging generalization problems like ARC.
Related papers
- LLM Program Optimization via Retrieval Augmented Search [71.40092732256252]
We propose a blackbox adaptation method called Retrieval Augmented Search (RAS) that performs beam search over candidate optimizations.
We show that RAS performs 1.8$times$ better than prior state-of-the-art blackbox adaptation strategies.
We also propose a method called AEGIS for improving interpretability by decomposing training examples into "atomic edits"
arXiv Detail & Related papers (2025-01-31T06:34:47Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning.
This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP)
We evaluate our approach on two benchmark datasets: StepGame and SparQA.
arXiv Detail & Related papers (2024-11-27T18:04:05Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
Large language models (LLMs) have the capability of zero-shot learning, which does not require training or fine-tuning.
We propose zsLLMCode, a novel approach that generates functional code embeddings using LLMs.
arXiv Detail & Related papers (2024-09-23T01:03:15Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
arXiv Detail & Related papers (2024-07-20T07:39:07Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search [7.769411917500852]
We introduce a novel LLM-guided search framework (LLM-GS)
Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods.
We develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to improve the programs consistently.
arXiv Detail & Related papers (2024-05-26T06:33:48Z) - VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding [65.12464615430036]
This paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of Large Language Models (LLMs)
Ours is a novel approach to extend the utility of LLMs in the context of video tasks.
We harness their contextual learning capabilities to generate executable visual programs for video understanding.
arXiv Detail & Related papers (2024-03-21T18:00:00Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.