Non-Progressive Influence Maximization in Dynamic Social Networks
- URL: http://arxiv.org/abs/2412.07402v1
- Date: Tue, 10 Dec 2024 10:52:32 GMT
- Title: Non-Progressive Influence Maximization in Dynamic Social Networks
- Authors: Yunming Hui, Shihan Wang, Melisachew Wudage Chekol, Stevan Rudinac, Inez Maria Zwetsloot,
- Abstract summary: The influence (IM) problem involves identifying a set of key individuals in a social network who can maximize the spread of influence through their network connections.
In this paper, we focus on the dynamic non-progressive IM problem, which considers the dynamic nature of real-world social networks.
We propose a novel algorithm that effectively leverages graph embedding to capture the temporal changes of dynamic networks and seamlessly integrates with deep reinforcement learning.
- Score: 3.7618284656539878
- License:
- Abstract: The influence maximization (IM) problem involves identifying a set of key individuals in a social network who can maximize the spread of influence through their network connections. With the advent of geometric deep learning on graphs, great progress has been made towards better solutions for the IM problem. In this paper, we focus on the dynamic non-progressive IM problem, which considers the dynamic nature of real-world social networks and the special case where the influence diffusion is non-progressive, i.e., nodes can be activated multiple times. We first extend an existing diffusion model to capture the non-progressive influence propagation in dynamic social networks. We then propose the method, DNIMRL, which employs deep reinforcement learning and dynamic graph embedding to solve the dynamic non-progressive IM problem. In particular, we propose a novel algorithm that effectively leverages graph embedding to capture the temporal changes of dynamic networks and seamlessly integrates with deep reinforcement learning. The experiments, on different types of real-world social network datasets, demonstrate that our method outperforms state-of-the-art baselines.
Related papers
- From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.
Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.
These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs [1.1861167902268832]
Multi-agent deep reinforcement learning (MADRL) has emerged as a promising method to address a wide range of complex optimization problems like power control.
We present the use of graphs as communication-inducing structures among distributed agents as an effective means to mitigate these challenges.
arXiv Detail & Related papers (2023-11-27T14:25:40Z) - Learning Continuous Network Emerging Dynamics from Scarce Observations
via Data-Adaptive Stochastic Processes [11.494631894700253]
We introduce ODE Processes for Network Dynamics (NDP4ND), a new class of processes governed by data-adaptive network dynamics.
We show that the proposed method has excellent data and computational efficiency, and can adapt to unseen network emerging dynamics.
arXiv Detail & Related papers (2023-10-25T08:44:05Z) - Amortized Network Intervention to Steer the Excitatory Point Processes [8.15558505134853]
Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
arXiv Detail & Related papers (2023-10-06T11:17:28Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning.
We present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets.
arXiv Detail & Related papers (2023-05-28T04:08:40Z) - GradMDM: Adversarial Attack on Dynamic Networks [10.948810070861525]
We attack dynamic models with our novel algorithm GradMDM.
GradMDM adjusts the direction and the magnitude of the gradients to effectively find a small perturbation for each input.
We evaluate GradMDM on multiple datasets and dynamic models, where it outperforms previous energy-oriented attack techniques.
arXiv Detail & Related papers (2023-04-01T09:07:12Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
We investigate the dynamics-aware adversarial attack problem of adaptive neural networks.
We propose a Leaded Gradient Method (LGM) and show the significant effects of the lagged gradient.
Our LGM achieves impressive adversarial attack performance compared with the dynamic-unaware attack methods.
arXiv Detail & Related papers (2022-10-15T01:32:08Z) - Provably Efficient Reinforcement Learning for Online Adaptive Influence
Maximization [53.11458949694947]
We consider an adaptive version of content-dependent online influence problem where seed nodes are sequentially activated based on realtime feedback.
Our algorithm maintains a network model estimate and selects seed adaptively, exploring the social network while improving the optimal policy optimistically.
arXiv Detail & Related papers (2022-06-29T18:17:28Z) - Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network [75.1236305913734]
We investigate the dynamics-aware adversarial attack problem in deep neural networks.
Most existing adversarial attack algorithms are designed under a basic assumption -- the network architecture is fixed throughout the attack process.
We propose a Leaded Gradient Method (LGM) and show the significant effects of the lagged gradient.
arXiv Detail & Related papers (2021-12-17T10:53:35Z) - Contingency-Aware Influence Maximization: A Reinforcement Learning
Approach [52.109536198330126]
influence (IM) problem aims at finding a subset of seed nodes in a social network that maximize the spread of influence.
In this study, we focus on a sub-class of IM problems, where whether the nodes are willing to be the seeds when being invited is uncertain, called contingency-aware IM.
Despite the initial success, a major practical obstacle in promoting the solutions to more communities is the tremendous runtime of the greedy algorithms.
arXiv Detail & Related papers (2021-06-13T16:42:22Z) - ABEM: An Adaptive Agent-based Evolutionary Approach for Mining
Influencers in Online Social Networks [1.6128569396451058]
A key step in evolutionary influence in online social networks is the identification of a small number of users, known as influencers.
The evolving nature of the structure of these networks makes it difficult to locate and identify these influencers.
We propose an adaptive agent-based approach to address this problem in the context of both static and dynamic networks.
arXiv Detail & Related papers (2021-04-14T00:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.