論文の概要: Latency Minimization for UAV-Enabled Federated Learning: Trajectory Design and Resource Allocation
- arxiv url: http://arxiv.org/abs/2412.07428v2
- Date: Thu, 27 Mar 2025 13:35:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:48:32.154404
- Title: Latency Minimization for UAV-Enabled Federated Learning: Trajectory Design and Resource Allocation
- Title(参考訳): UAV対応フェデレーション学習における遅延最小化:軌道設計と資源配分
- Authors: Xuhui Zhang, Wenchao Liu, Jinke Ren, Huijun Xing, Gui Gui, Yanyan Shen, Shuguang Cui,
- Abstract要約: フェデレーテッド・ラーニング(FL)は、無線ネットワークにまたがる分散機械学習において、トランスフォーメーションパラダイムとなっている。
本研究では,無人航空機(UAV)を移動体サーバとして活用し,FL訓練プロセスを強化する新しい枠組みを提案する。
提案手法は,遅延を最大15.29%削減する既存のベンチマークスキームを超えるだけでなく,理想的なシナリオとほぼ一致したトレーニング効率も達成できることを示す。
- 参考スコア(独自算出の注目度): 47.20867891501245
- License:
- Abstract: Federated learning (FL) has become a transformative paradigm for distributed machine learning across wireless networks. However, the performance of FL is often hindered by the unreliable communication links between resource-constrained Internet of Things (IoT) devices and the central server. To overcome this challenge, we propose a novel framework that employs an unmanned aerial vehicle (UAV) as a mobile server to enhance the FL training process. By capitalizing on the UAV's mobility, we establish strong line-of-sight connections with IoT devices, thereby enhancing communication reliability and capacity. To maximize training efficiency, we formulate a latency minimization problem that jointly optimizes bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's flight trajectory. Subsequently, we analyze the required rounds of the IoT devices training and the UAV aggregation for FL convergence. Based on the convergence constraint, we transform the problem into three subproblems and develop an efficient alternating optimization algorithm to solve this problem effectively. Additionally, we provide a thorough analysis of the algorithm's convergence and computational complexity. Extensive numerical results demonstrate that our proposed scheme not only surpasses existing benchmark schemes in reducing latency up to 15.29%, but also achieves training efficiency that nearly matches the ideal scenario.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、無線ネットワークにまたがる分散機械学習において、トランスフォーメーションパラダイムとなっている。
しかし、FLの性能は、リソース制約のあるモノのインターネット(IoT)デバイスと中央サーバとの間の信頼性の低い通信リンクによって妨げられることが多い。
そこで本研究では,無人航空機(UAV)を移動体サーバとして活用し,FL訓練プロセスを強化する新しいフレームワークを提案する。
UAVのモビリティを活かすことで、IoTデバイスとの強い直線接続を確立し、通信信頼性とキャパシティを向上します。
トレーニング効率を最大化するために、帯域割り当て、計算周波数、UAVとIoTデバイスの両方の電力送信、UAVの飛行軌跡を共同で最適化するレイテンシ最小化問題を定式化する。
その後、FL収束のためのIoTデバイストレーニングとUAVアグリゲーションの必要なラウンドを分析した。
収束制約に基づき、この問題を3つのサブプロブレムに変換し、効率的な交互最適化アルゴリズムを開発し、この問題を効果的に解決する。
さらに,アルゴリズムの収束度と計算複雑性を徹底的に解析する。
その結果,提案手法は遅延時間を15.29%まで短縮するだけでなく,理想的なシナリオとほぼ一致したトレーニング効率も達成できることがわかった。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - Resource Efficient Asynchronous Federated Learning for Digital Twin Empowered IoT Network [29.895766751146155]
Digital twin(DT)は、IoT(Internet of Things)デバイスのリアルタイムステータスと動的トポロジマッピングを提供する。
我々は,非同期フェデレーション学習(FL)に基づく軽量DT強化IoTネットワークに適した動的リソーススケジューリングアルゴリズムを開発した。
具体的には,エネルギー消費と遅延の両方を包含する多目的関数を最小化する。
論文 参考訳(メタデータ) (2024-08-26T14:28:51Z) - Federated Learning in UAV-Enhanced Networks: Joint Coverage and
Convergence Time Optimization [16.265792031520945]
フェデレートラーニング(FL)には、ローカルデータを転送することなく、共有モデルを協調的にトレーニングする複数のデバイスが含まれる。
FLは通信のオーバーヘッドを減らし、エネルギー資源の少ないUAV強化無線ネットワークにおいて有望な学習方法となる。
この可能性にもかかわらず、UAVに強化されたネットワークにFLを実装することは困難であり、カバー範囲を最大化する従来のUAV配置手法はFL遅延を増大させる。
論文 参考訳(メタデータ) (2023-08-31T17:50:54Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
収集したデータが時間に敏感な場合に注目し,そのタイムラインを維持することが重要である。
我々の目標は、UAVの軌道を最適に設計することであり、グローバル・エイジ・オブ・アップデート(AoU)のような訪問するIoTデバイスのサブセットを最小化することである。
論文 参考訳(メタデータ) (2023-03-15T15:03:09Z) - MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles [21.615151912285835]
我々は、ニューラルネットワークを協調的かつ分散的に訓練するために、近隣のICVをコーディネートする基地局を考える。
車両の移動性のため、基地局とICV間の接続は短命である。
本稿では,各トレーニングラウンドの時間と局所的なイテレーション回数を最適化し,FL-ICVフレームワークの高速化を提案する。
論文 参考訳(メタデータ) (2022-12-07T08:53:53Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。