論文の概要: Boosting Alignment for Post-Unlearning Text-to-Image Generative Models
- arxiv url: http://arxiv.org/abs/2412.07808v1
- Date: Mon, 09 Dec 2024 21:36:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:48.134857
- Title: Boosting Alignment for Post-Unlearning Text-to-Image Generative Models
- Title(参考訳): 学習後テキスト・画像生成モデルのためのブースティングアライメント
- Authors: Myeongseob Ko, Henry Li, Zhun Wang, Jonathan Patsenker, Jiachen T. Wang, Qinbin Li, Ming Jin, Dawn Song, Ruoxi Jia,
- Abstract要約: 大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
- 参考スコア(独自算出の注目度): 55.82190434534429
- License:
- Abstract: Large-scale generative models have shown impressive image-generation capabilities, propelled by massive data. However, this often inadvertently leads to the generation of harmful or inappropriate content and raises copyright concerns. Driven by these concerns, machine unlearning has become crucial to effectively purge undesirable knowledge from models. While existing literature has studied various unlearning techniques, these often suffer from either poor unlearning quality or degradation in text-image alignment after unlearning, due to the competitive nature of these objectives. To address these challenges, we propose a framework that seeks an optimal model update at each unlearning iteration, ensuring monotonic improvement on both objectives. We further derive the characterization of such an update. In addition, we design procedures to strategically diversify the unlearning and remaining datasets to boost performance improvement. Our evaluation demonstrates that our method effectively removes target classes from recent diffusion-based generative models and concepts from stable diffusion models while maintaining close alignment with the models' original trained states, thus outperforming state-of-the-art baselines. Our code will be made available at \url{https://github.com/reds-lab/Restricted_gradient_diversity_unlearning.git}.
- Abstract(参考訳): 大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
しかし、これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
これらの懸念により、機械学習はモデルから望ましくない知識を効果的に浄化するために重要になっている。
既存の文献は、様々な未学習技術を研究してきたが、これらの目的の競争性のため、未学習の質の低下や、未学習後のテキスト画像のアライメントの悪化に悩まされることが多い。
これらの課題に対処するため、未学習の反復ごとに最適なモデル更新を求め、両方の目的に対して単調な改善を確実にするフレームワークを提案する。
我々はさらにそのような更新の特徴を導き出す。
さらに、未学習と残りのデータセットを戦略的に多様化させ、パフォーマンス向上を図るための手順を設計する。
提案手法は,従来の訓練状態との密接な整合性を維持しつつ,近年の拡散モデルからターゲットクラスを効果的に除去し,最先端のベースラインよりも優れていることを示す。
我々のコードは \url{https://github.com/reds-lab/Restricted_gradient_diversity_unlearning.git} で利用可能になります。
関連論文リスト
- Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
本稿では,2段階の拡散モデルに対する新しい最適化フレームワークを提案する。
このフレームワークは、微調整と未学習のプロセスを統一的なフェーズに統合する。
様々なプルーニングや概念未学習の手法と互換性がある。
論文 参考訳(メタデータ) (2024-12-19T19:13:18Z) - RADIOv2.5: Improved Baselines for Agglomerative Vision Foundation Models [60.596005921295806]
集約モデルは、ビジョンファウンデーションモデルをトレーニングするための強力なアプローチとして現れています。
我々は、解像度モードシフト、教師の不均衡、慣用的教師アーティファクト、過剰な出力トークンなど、重要な課題を識別する。
本稿では,マルチレゾリューショントレーニング,モザイク強化,教師の損失関数のバランスの改善など,いくつかの新しいソリューションを提案する。
論文 参考訳(メタデータ) (2024-12-10T17:06:41Z) - Reward Incremental Learning in Text-to-Image Generation [26.64026346266299]
本稿では,計算オーバーヘッドを最小限に抑える方法であるReward Incremental Distillation(RID)を提案する。
実験結果から,RILシナリオにおける一貫した高次勾配生成の実現におけるRIDの有効性が示された。
論文 参考訳(メタデータ) (2024-11-26T10:54:33Z) - Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - ObjBlur: A Curriculum Learning Approach With Progressive Object-Level Blurring for Improved Layout-to-Image Generation [7.645341879105626]
レイアウト・ツー・イメージ生成モデルを改善するための新しいカリキュラム学習手法であるBlurを提案する。
提案手法は,プログレッシブオブジェクトレベルのぼかしをベースとして,トレーニングを効果的に安定化し,生成画像の品質を向上させる。
論文 参考訳(メタデータ) (2024-04-11T08:50:12Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。