論文の概要: A Comprehensive Survey on AI-based Methods for Patents
- arxiv url: http://arxiv.org/abs/2404.08668v2
- Date: Tue, 18 Jun 2024 04:58:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 01:55:10.244775
- Title: A Comprehensive Survey on AI-based Methods for Patents
- Title(参考訳): AIに基づく特許法に関する包括的調査
- Authors: Homaira Huda Shomee, Zhu Wang, Sathya N. Ravi, Sourav Medya,
- Abstract要約: AIベースのツールは、特許サイクルにおける重要なタスクを合理化し、強化する機会を提供する。
この学際的な調査は、AIと特許分析の交差点で働く研究者や実践者のリソースとして機能することを目的としている。
- 参考スコア(独自算出の注目度): 14.090575139188422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Artificial Intelligence (AI) and machine learning have demonstrated transformative capabilities across diverse domains. This progress extends to the field of patent analysis and innovation, where AI-based tools present opportunities to streamline and enhance important tasks in the patent cycle such as classification, retrieval, and valuation prediction. This not only accelerates the efficiency of patent researchers and applicants but also opens new avenues for technological innovation and discovery. Our survey provides a comprehensive summary of recent AI tools in patent analysis from more than 40 papers from 26 venues between 2017 and 2023. Unlike existing surveys, we include methods that work for patent image and text data. Furthermore, we introduce a novel taxonomy for the categorization based on the tasks in the patent life cycle as well as the specifics of the AI methods. This interdisciplinary survey aims to serve as a resource for researchers and practitioners who are working at the intersection of AI and patent analysis as well as the patent offices that are aiming to build efficient patent systems.
- Abstract(参考訳): 人工知能(AI)と機械学習の最近の進歩は、さまざまな領域にまたがるトランスフォーメーション能力を示している。
この進歩は、AIベースのツールが、分類、検索、評価予測といった特許サイクルにおける重要なタスクを合理化し、強化する機会を提供する、特許分析とイノベーションの分野にまで及んでいる。
これは、特許研究者や申請者の効率を向上するだけでなく、技術革新と発見のための新たな道を開く。
私たちの調査では、2017年から2023年の間に26の会場から40以上の論文から、最近のAIツールに関する包括的な要約を公開しています。
既存の調査と異なり、特許画像とテキストデータのために機能する手法を含んでいる。
さらに,特許ライフサイクルの課題とAI手法の具体性に基づく分類のための新しい分類法を導入する。
この学際的な調査は、AIと特許分析の交差点で働く研究者や実践者、さらには効率的な特許システムの構築を目指す特許事務所のリソースとして機能することを目的としている。
関連論文リスト
- PatentEdits: Framing Patent Novelty as Textual Entailment [62.8514393375952]
このデータセットには105万例の修正が成功している。
我々は、文章を文単位でラベル付けするアルゴリズムを設計し、これらの編集がいかに大きな言語モデルで予測できるかを確立する。
引用引用文と起草文の文的含意を評価することは,どの発明的主張が変化しないか,あるいは先行技術に関して新規かを予測するのに特に有効であることを示す。
論文 参考訳(メタデータ) (2024-11-20T17:23:40Z) - Natural Language Processing in Patents: A Survey [0.0]
重要な技術的および法的情報をカプセル化した特許は、自然言語処理(NLP)アプリケーションのための豊富なドメインを提供する。
NLP技術が発展するにつれて、大規模言語モデル(LLM)は一般的なテキスト処理や生成タスクにおいて優れた能力を示してきた。
本稿は,NLP研究者に,この複雑な領域を効率的にナビゲートするために必要な知識を付与することを目的とする。
論文 参考訳(メタデータ) (2024-03-06T23:17:16Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - Graph Representation Learning Towards Patents Network Analysis [2.202803272456695]
この研究は、イランの公式ガゼットに登録された特許データの作成、分析、検索にグラフ表現学習アプローチを採用した。
イランの特許グラフをスクラッチから作成するために、スクラップされた特許データセットから重要なエンティティが抽出された。
新たなグラフアルゴリズムとテキストマイニング手法の活用により,イランの特許データから新たな産業分野と研究分野を特定した。
論文 参考訳(メタデータ) (2023-09-25T05:49:40Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
本章は, コンクリート材料用AI研究の主目的と知識構造を明らかにすることを目的としている。
まず、1990年から2020年にかけて発行された389の雑誌記事が、ウェブ・オブ・サイエンスから検索された。
キーワード共起分析やドキュメント共起分析などのサイエントメトリックツールを用いて,研究分野の特徴と特徴を定量化した。
論文 参考訳(メタデータ) (2022-09-17T18:24:56Z) - A Survey on Sentence Embedding Models Performance for Patent Analysis [0.0]
本稿では,PatentSBERTaアプローチに基づく埋め込みモデルの精度を評価するための標準ライブラリとデータセットを提案する。
patentSBERTa, Bert-for-patents, and TF-IDF Weighted Word Embeddings is the most accuracy for computing sentence embeddeds at the subclass level。
論文 参考訳(メタデータ) (2022-04-28T12:04:42Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
われわれは10年以上前に行われた法律分野における、注目に値する、未調査のAI設計プロセスについて検討する。
インタラクティブなシミュレーション手法によって,コンピュータ科学者と弁護士が共同設計者になれることを示す。
論文 参考訳(メタデータ) (2022-03-08T15:46:52Z) - Automated Single-Label Patent Classification using Ensemble Classifiers [0.0]
特許文書の異なる部分で訓練されたアンサンブル分類器の革新的な方法を提案する。
我々の知る限りでは、特許分類問題に対してアンサンブル法が提案されたのはこれが初めてである。
論文 参考訳(メタデータ) (2022-03-03T08:47:15Z) - Patent Sentiment Analysis to Highlight Patent Paragraphs [0.0]
特許文書が与えられた場合、異なるセマンティックアノテーションを識別することは興味深い研究の側面である。
手動の特許分析の過程で、より読みやすくするために、段落をマークして意味情報を認識することが実際である。
この作業は、セマンティック情報を自動的に強調する特許実践者を支援し、機械学習の適性を利用して持続的で効率的な特許分析を作成するのに役立つ。
論文 参考訳(メタデータ) (2021-11-06T13:28:29Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。