Intelligent System for Automated Molecular Patent Infringement Assessment
- URL: http://arxiv.org/abs/2412.07819v2
- Date: Mon, 13 Jan 2025 03:03:57 GMT
- Title: Intelligent System for Automated Molecular Patent Infringement Assessment
- Authors: Yaorui Shi, Sihang Li, Taiyan Zhang, Xi Fang, Jiankun Wang, Zhiyuan Liu, Guojiang Zhao, Zhengdan Zhu, Zhifeng Gao, Renxin Zhong, Linfeng Zhang, Guolin Ke, Weinan E, Hengxing Cai, Xiang Wang,
- Abstract summary: PatentFinder is a novel multi-agent and tool-enhanced intelligence system that can accurately and comprehensively evaluate small molecules for patent infringement.
PatentFinder features five specialized agents that collaboratively analyze patent claims and molecular structures.
PatentFinder autonomously generates detailed and interpretable patent infringement reports, showcasing enhanced accuracy and improved interpretability.
- Score: 38.48937966447085
- License:
- Abstract: Automated drug discovery offers significant potential for accelerating the development of novel therapeutics by substituting labor-intensive human workflows with machine-driven processes. However, molecules generated by artificial intelligence may unintentionally infringe on existing patents, posing legal and financial risks that impede the full automation of drug discovery pipelines. This paper introduces PatentFinder, a novel multi-agent and tool-enhanced intelligence system that can accurately and comprehensively evaluate small molecules for patent infringement. PatentFinder features five specialized agents that collaboratively analyze patent claims and molecular structures with heuristic and model-based tools, generating interpretable infringement reports. To support systematic evaluation, we curate MolPatent-240, a benchmark dataset tailored for patent infringement assessment algorithms. On this benchmark, PatentFinder outperforms baseline methods that rely solely on large language models or specialized chemical tools, achieving a 13.8% improvement in F1-score and a 12% increase in accuracy. Additionally, PatentFinder autonomously generates detailed and interpretable patent infringement reports, showcasing enhanced accuracy and improved interpretability. The high accuracy and interpretability of PatentFinder make it a valuable and reliable tool for automating patent infringement assessments, offering a practical solution for integrating patent protection analysis into the drug discovery pipeline.
Related papers
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - Towards Automated Patent Workflows: AI-Orchestrated Multi-Agent Framework for Intellectual Property Management and Analysis [0.0]
PatExpert is an autonomous multi-agent conversational framework designed to streamline and optimize patent-related tasks.
The framework consists of a metaagent that coordinates task-specific expert agents for various patent-related tasks and a critique agent for error handling and feedback provision.
arXiv Detail & Related papers (2024-09-21T13:44:34Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - ClaimCompare: A Data Pipeline for Evaluation of Novelty Destroying Patent Pairs [2.60235825984014]
We introduce a novel data pipeline, ClaimCompare, designed to generate labeled patent claim datasets suitable for training IR and ML models.
To the best of our knowledge, ClaimCompare is the first pipeline that can generate multiple novelty destroying patent datasets.
arXiv Detail & Related papers (2024-07-16T21:38:45Z) - Automated Neural Patent Landscaping in the Small Data Regime [6.284464997330885]
The rapid expansion of patenting activity in recent decades has driven an increasing need for efficient and effective automated patent landscaping approaches.
We present an automated neural patent landscaping system that demonstrates significantly improved performance on difficult examples.
arXiv Detail & Related papers (2024-07-10T19:13:37Z) - A Comprehensive Survey on AI-based Methods for Patents [14.090575139188422]
AI-based tools present opportunities to streamline and enhance important tasks in the patent cycle.
This interdisciplinary survey aims to serve as a resource for researchers and practitioners working at the intersection of AI and patent analysis.
arXiv Detail & Related papers (2024-04-02T20:44:06Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
State-of-the-art methods for multi-label patent classification rely on deep opaque neural networks (DNNs)
We propose a novel deep explainable patent classification framework by introducing layer-wise relevance propagation (LRP)
Considering the relevance score, we then generate explanations by visualizing relevant words for the predicted patent class.
arXiv Detail & Related papers (2023-10-31T14:11:37Z) - Automated patent extraction powers generative modeling in focused
chemical spaces [0.0]
Deep generative models have emerged as an exciting avenue for inverse molecular design.
One of the key challenges in their applicability to materials science and chemistry has been the lack of access to sizeable training datasets with property labels.
We develop an automated pipeline to go from patent digital files to the generation of novel candidates with minimal human intervention.
arXiv Detail & Related papers (2023-03-14T23:26:55Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.