Boundary transitions from a single round of measurements on gapless quantum states
- URL: http://arxiv.org/abs/2412.07830v1
- Date: Tue, 10 Dec 2024 19:00:00 GMT
- Title: Boundary transitions from a single round of measurements on gapless quantum states
- Authors: Yue Liu, Sara Murciano, David F. Mross, Jason Alicea,
- Abstract summary: We show how a single round of measurements on gapless quantum systems can induce non-trivial transitions separating regimes.
We extend our analysis to tricritical Ising and three-state Potts critical theories, which also display measurement-induced boundary transitions.
- Score: 6.839623159334513
- License:
- Abstract: Measurements can qualitatively alter correlations and entanglement emerging in gapless quantum matter. We show how a single round of measurements on gapless quantum systems can, upon rotating the measurement basis, induce non-trivial transitions separating regimes displaying universal characteristics governed by distinct boundary conformal field theories. We develop the theory of such `measurement-induced boundary transitions' by investigating a gapless parent of the one-dimensional cluster state, obtained by appropriately symmetrizing a commuting projector Hamiltonian for the latter. Projective measurements on the cluster state are known to convert the wavefunction, after post-selection or decoding, into a long-range-ordered Greenberger-Horne-Zeilinger (GHZ) state. Similar measurements applied to the gapless parent (i) generate long-range order coexisting with power-law correlations when post-selecting for uniform outcomes, and (ii) yield power-law correlations distinct from those in the pre-measurement state upon decoding. In the post-selection scenario, rotating the measurement basis preserves long-range order up until a critical tilt angle marking a measurement-induced boundary transition to a power-law-ordered regime. Such a transition -- which does not exist in the descendant cluster state -- establishes new connections between measurement effects on many-body states and non-trivial renormalization-group flows. We extend our analysis to tricritical Ising and three-state Potts critical theories, which also display measurement-induced boundary transitions, and propose general criteria for their existence in other settings.
Related papers
- Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Triviality of quantum trajectories close to a directed percolation
transition [0.0]
We study quantum circuits consisting of unitary gates, projective measurements, and control operations that steer the system towards a pure absorbing state.
Two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a directed percolation transition into the absorbing state.
arXiv Detail & Related papers (2022-12-28T18:52:56Z) - Entanglement Steering in Adaptive Circuits with Feedback [6.5014847595384495]
We introduce a class of adaptive random circuit models with feedback that exhibit transitions in both settings.
We demonstrate that the former transition belongs to the parity-conserving universality class by an explicit mapping to a classical branching-annihilating random walk process.
arXiv Detail & Related papers (2022-11-09T19:21:12Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks [0.0]
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment.
We find a remarkably similar phenomenology as the measurement strength $gamma$ is increased.
We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement.
arXiv Detail & Related papers (2021-03-16T15:30:57Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.