論文の概要: Deep-Learning Control of Lower-Limb Exoskeletons via simplified Therapist Input
- arxiv url: http://arxiv.org/abs/2412.07959v1
- Date: Tue, 10 Dec 2024 22:52:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:01:03.083486
- Title: Deep-Learning Control of Lower-Limb Exoskeletons via simplified Therapist Input
- Title(参考訳): 簡易療法士入力による下肢外骨格の深層学習制御
- Authors: Lorenzo Vianello, Clément Lhoste, Emek Barış Küçüktabak, Matthew Short, Levi Hargrove, Jose L. Pons,
- Abstract要約: 部分補助性外骨格は歩行回復に有意な可能性を秘めている。
外骨格における相互作用トルクの制御は階層的な制御構造に依存している。
この研究は、外骨格における階層制御の限界に対処する3段階のデータ駆動型アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Partial-assistance exoskeletons hold significant potential for gait rehabilitation by promoting active participation during (re)learning of normative walking patterns. Typically, the control of interaction torques in partial-assistance exoskeletons relies on a hierarchical control structure. These approaches require extensive calibration due to the complexity of the controller and user-specific parameter tuning, especially for activities like stair or ramp navigation. To address the limitations of hierarchical control in exoskeletons, this work proposes a three-step, data-driven approach: (1) using recent sensor data to probabilistically infer locomotion states (landing step length, landing step height, walking velocity, step clearance, gait phase), (2) allowing therapists to modify these features via a user interface, and (3) using the adjusted locomotion features to predict the desired joint posture and model stiffness in a spring-damper system based on prediction uncertainty. We evaluated the proposed approach with two healthy participants engaging in treadmill walking and stair ascent and descent at varying speeds, with and without external modification of the gait features through a user interface. Results showed a variation in kinematics according to the gait characteristics and a negative interaction power suggesting exoskeleton assistance across the different conditions.
- Abstract(参考訳): 部分補助性外骨格は、規範的歩行パターンの(再)学習中に活発な参加を促進することにより歩行回復に有意な可能性を秘めている。
通常、部分支持エキソ骨格における相互作用トルクの制御は階層的な制御構造に依存している。
これらのアプローチは、特に階段やランプナビゲーションのようなアクティビティにおいて、コントローラの複雑さとユーザ固有のパラメータチューニングのために、広範なキャリブレーションを必要とする。
本研究は,外骨格における階層的制御の限界に対処するため,(1)最近のセンサデータを用いて移動状態を確率的に推定すること,(2)セラピストがこれらの特徴をユーザインターフェースで修正できること,(3)調整された移動特徴を用いてスプリングダムシステムの所望の関節姿勢とモデル剛性を予測すること,の3段階からなるデータ駆動型アプローチを提案する。
提案手法を,トレッドミル歩行と階段昇降と降下を異なる速度で行う2人の健常者を対象に評価した。
その結果,歩行特性による運動学の変動と,異なる条件における外骨格補助を示唆する負の相互作用力が認められた。
関連論文リスト
- Continual Learning from Simulated Interactions via Multitask Prospective Rehearsal for Bionic Limb Behavior Modeling [0.7922558880545526]
生体補綴制御の文脈における人間の行動モデルを提案する。
本稿では、時間とともに動きを予測・洗練するマルチタスク・継続的適応モデルを提案する。
我々は,トランスティバイアル・アンプを含む実世界の人間の歩行データセットの実験を通じて,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-05-02T09:22:54Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
関節間の所望距離を維持するために,新しい制御可能な運動生成手法であるInterControlを導入する。
そこで本研究では,既成の大規模言語モデルを用いて,ヒューマンインタラクションのための結合ペア間の距離を生成できることを実証した。
論文 参考訳(メタデータ) (2023-11-27T14:32:33Z) - The online learning architecture with edge computing for high-level
control for assisting patients [3.1084001733555584]
脊髄損傷、脳卒中、変性疾患などの疾患による移動障害の頻度は世界中で上昇している。
下肢のエキソ骨格は、このような障害のある個人に対する移動性とリハビリテーションを強化するための有効な解決策として、ますます認識されている。
既存のエクソスケルトン制御システムは、レイテンシ、適応性の欠如、計算不効率といった制限に悩まされることが多い。
本稿では,高レベル低域外骨格制御のためのエッジコンピューティングと統合された新しいオンライン対角学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-09-10T20:30:03Z) - Advancements in Upper Body Exoskeleton: Implementing Active Gravity
Compensation with a Feedforward Controller [0.0]
上肢外骨格におけるアクティブ重力補償のためのフィードフォワード制御システムを提案する。
このシステムは、Newton-Euler Inverse Dynamicsに基づく解析的制御方程式を用いて、内部モーターセンサからの位置データのみを用いてトルクを計算する。
論文 参考訳(メタデータ) (2023-09-09T06:39:38Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
人間は高度に適応可能で、異なるタスク、状況、状況を扱うために異なるモードを素早く切り替える。
人間と物体の相互作用(HOI)において、これらのモードは、(1)活動全体に対する大規模な一貫した計画、(2)タイムラインに沿って開始・終了する小規模の子どもの対話的行動の2つのメカニズムに起因していると考えられる。
本研究は、人間の動作を協調的に制御する2つの同時メカニズムをモデル化することを提案する。
論文 参考訳(メタデータ) (2023-07-24T12:21:33Z) - Pose-Oriented Transformer with Uncertainty-Guided Refinement for
2D-to-3D Human Pose Estimation [51.00725889172323]
本研究では,3次元ポーズ推定のための不確実性ガイド付き多目的変換器(POT)を提案する。
我々はまず,人骨のトポロジーを明示的に活用するために,新しいポーズ指向の自己注意機構と距離関連位置埋め込みを開発した。
本稿では,特に難解な関節に対するPOTからのポーズ予測を洗練させるために,不確実性誘導型リファインメントネットワーク(UGRN)を提案する。
論文 参考訳(メタデータ) (2023-02-15T00:22:02Z) - Adaptation through prediction: multisensory active inference torque
control [0.0]
本稿では,産業用アームのための多感能動型トルクコントローラを提案する。
私たちのコントローラは、予測的脳仮説にインスパイアされ、現在のアクティブな推論アプローチの能力を向上します。
論文 参考訳(メタデータ) (2021-12-13T16:03:18Z) - Learning a Shared Model for Motorized Prosthetic Joints to Predict
Ankle-Joint Motion [0.0]
異なる移動モードにおける足首関節運動を予測する学習ベース共有モデルを提案する。
共有モデルは,異なる移動モードの足首の角度やモーメントを,モードを明示的に分類することなく予測するのに適していることを示す。
論文 参考訳(メタデータ) (2021-11-14T19:02:40Z) - ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton
Gait Preference Landscapes [64.87637128500889]
興味あるアクティブラーニング(ROIAL)フレームワークの領域は、関心のある領域を通じて、各ユーザの基盤となるユーティリティ関数を積極的に学習する。
ROIALは、絶対的な数値スコアよりも信頼性の高いフィードバックメカニズムである順序と選好のフィードバックから学習する。
以上の結果から,限られた人為的試行から歩行実用景観を回復できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-11-09T22:45:58Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
従来の四重化制御のアプローチでは、単純化された手作りのモデルが採用されている。
これにより、有効な運動範囲が縮小されているため、ロボットの能力が大幅に低下する。
この研究において、これらの課題は、構造化潜在空間における最適化として四重化制御をフレーミングすることによって解決される。
深い生成モデルは、実現可能な関節構成の統計的表現を捉え、一方、複雑な動的および終端的制約は高レベルな意味的指標によって表現される。
実世界とシミュレーションの両方で最適化された移動軌跡の実現可能性を検証する。
論文 参考訳(メタデータ) (2020-07-03T07:04:18Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。