論文の概要: FLRONet: Deep Operator Learning for High-Fidelity Fluid Flow Field Reconstruction from Sparse Sensor Measurements
- arxiv url: http://arxiv.org/abs/2412.08009v1
- Date: Wed, 11 Dec 2024 01:28:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:01:01.207455
- Title: FLRONet: Deep Operator Learning for High-Fidelity Fluid Flow Field Reconstruction from Sparse Sensor Measurements
- Title(参考訳): FLRONet:スパースセンサによる高密度流体場再構成のための深部演算子学習
- Authors: Hiep Vo Dang, Joseph B. Choi, Phong C. H. Nguyen,
- Abstract要約: FLRONetは、空間と時間におけるスパースセンサー測定からフルステートフローフィールドを再構築するために設計された、新しい演算子学習フレームワークである。
FLRONetは真の演算子を近似する際の優れた性能を実現し、高忠実度離散化においてかなり高速な推論を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The ability to reconstruct high-fidelity fluid flow fields from sparse sensor measurement is critical for many science and engineering applications, but remains a huge challenge. This challenge is caused by the large difference between the dimensions of the state space and the observational space, making the operator that provides the mapping from the state space to the observational space ill-conditioned and non-invertible. As a result, deriving the forward map from the observational space to the state space as the inverse of the measurement operator is nearly impossible. While traditional methods, including sparse optimization, data assimilation, or machine learning based regressive reconstruction, are available, they often struggle with generalization and computational efficiency, particularly when non-uniform or varying discretization of the domain are considered. In this work, we propose FLRONet, a novel operator learning framework designed to reconstruct full-state flow fields from sparse sensor measurements in space and time. FLRONet utilizes a branch-trunk architecture, where the branch network integrates sensor observations from multiple time instances, and the trunk network encodes the entire temporal domain. This design allows FLRONet to achieve highly accurate, discretization-independent reconstructions at any time within the observation window. Although the popular three-dimensional Fourier Neural Operator offers similar functionalities, our results show that FLRONet surpasses it in both accuracy and efficiency. FLRONet not only achieves superior performance in approximating the true operator but also exhibits significantly faster inference at high-fidelity discretizations.
- Abstract(参考訳): スパースセンサー計測から高忠実度流体場を再構築する能力は多くの科学・工学的応用において重要であるが、依然として大きな課題である。
この問題は状態空間と観測空間の次元の大きな違いによって引き起こされ、状態空間から観測空間への写像を提供する作用素は不条件で非可逆である。
その結果、観測空間から状態空間への前方マップの導出は、測定演算子の逆数としてほぼ不可能である。
スパース最適化、データ同化、機械学習に基づく回帰再構成といった従来の手法は利用可能であるが、一般化と計算効率に苦慮することが多い。
本研究では,空間と時間におけるスパースセンサ計測からフルステートフロー場を再構築する新しい演算子学習フレームワークであるFLRONetを提案する。
FLRONetはブランチトランクアーキテクチャを使用し、ブランチネットワークは複数のタイムインスタンスからのセンサ観測を統合し、トランクネットワークは時間領域全体をエンコードする。
この設計により、FLRONetは観測窓内でいつでも精度が高く、離散化に依存しない再構築を行うことができる。
一般的な3次元フーリエニューラル演算子も同様の機能を持つが、この結果はFLRONetが精度と効率の両方でそれを上回っていることを示している。
FLRONetは真の演算子を近似する上で優れた性能を発揮するだけでなく、高忠実度離散化においてかなり高速な推論を示す。
関連論文リスト
- FLRNet: A Deep Learning Method for Regressive Reconstruction of Flow Field From Limited Sensor Measurements [0.2621730497733947]
スパースセンサ計測による流れ場再構成のための深層学習手法であるFLRNetを導入する。
各種流動条件およびセンサ構成下でのFLRNetの再構成能力と一般化性について検証した。
論文 参考訳(メタデータ) (2024-11-21T03:40:34Z) - A Comparison of Deep Learning Architectures for Spacecraft Anomaly Detection [0.138120109831448]
本研究では,宇宙船データの異常検出における各種ディープラーニングアーキテクチャの有効性を比較することを目的とする。
調査中のモデルには、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、Long Short-Term Memory(LSTM)ネットワーク、Transformerベースのアーキテクチャなどがある。
論文 参考訳(メタデータ) (2024-03-19T16:08:27Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
本稿では,非対称な受容場オートエンコーダ (ARFA) モデルを提案する。
エンコーダでは,大域的時間的特徴抽出のための大規模なカーネルモジュールを提案し,デコーダでは局所的時間的再構成のための小さなカーネルモジュールを開発する。
降水予測のための大規模レーダエコーデータセットであるRainBenchを構築し,その領域における気象データの不足に対処する。
論文 参考訳(メタデータ) (2023-09-01T07:55:53Z) - Leveraging arbitrary mobile sensor trajectories with shallow recurrent
decoder networks for full-state reconstruction [4.243926243206826]
LSTM(long, short-term memory)ネットワークやデコーダネットワークのようなシーケンス・ツー・ベクター・モデルでは,動的情報を全状態空間推定にマッピング可能であることを示す。
ネットワークアーキテクチャの例外的な性能は、3つのアプリケーションで実証される。
論文 参考訳(メタデータ) (2023-07-20T21:42:01Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL)は、ローカルデータをアップロードすることなく、分散クライアントと協調して高品質なモデルをトレーニングすることを目的としている。
FL研究と実世界のシナリオの間には依然としてかなりのギャップがあり、主に異種デバイスの特徴とそのスケールによって引き起こされている。
本稿では,実世界横断デバイスFL,FS-Realのための効率的でスケーラブルなプロトタイピングシステムを提案する。
論文 参考訳(メタデータ) (2023-03-23T15:37:17Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
本稿では,RecFNOという優れた性能とメッシュ転送性を備えたエンド・ツー・エンドの物理場再構成手法を提案する。
提案手法は, スパース観測から無限次元空間における流れと熱場への写像を学習することを目的としている。
流体力学および熱力学に関する実験により,提案手法は既存のPOD法およびCNN法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-20T07:20:22Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
より優れた符号付き距離場を再構成するためのSN-Fittingを提案する。
SSNフィッティングは半署名の監督と損失に基づく領域サンプリング戦略で構成されている。
我々は,SSN-Fittingが,異なる設定下で最先端の性能を達成することを示す実験を行う。
論文 参考訳(メタデータ) (2022-06-14T09:40:17Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Global field reconstruction from sparse sensors with Voronoi
tessellation-assisted deep learning [0.0]
任意の数の任意の位置センサに対して,構造化格子を用いた深層学習に基づくデータ駆動型空間場復元手法を提案する。
提案手法は,実時間グローバルフィールド推定のためのニューラルネットワークの実用化に向けた新たな道を開く。
論文 参考訳(メタデータ) (2021-01-03T03:43:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。