論文の概要: FLRONet: Deep Operator Learning for High-Fidelity Fluid Flow Field Reconstruction from Sparse Sensor Measurements
- arxiv url: http://arxiv.org/abs/2412.08009v4
- Date: Sun, 02 Feb 2025 14:46:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:03:29.631647
- Title: FLRONet: Deep Operator Learning for High-Fidelity Fluid Flow Field Reconstruction from Sparse Sensor Measurements
- Title(参考訳): FLRONet:スパースセンサによる高密度流体場再構成のための深部演算子学習
- Authors: Hiep Vo Dang, Joseph B. Choi, Phong C. H. Nguyen,
- Abstract要約: 本研究では,スパースセンサによる流体流れ場再構築のための深層演算子学習フレームワークであるFLRONetを紹介する。
FLRONetは、センサ測定が不正確な場合や欠落の場合であっても、高いレベルの再現精度と堅牢性を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reconstructing high-fidelity fluid flow fields from sparse sensor measurements is vital for many science and engineering applications but remains challenging because of dimensional disparities between state and observational spaces. Due to such dimensional differences, the measurement operator becomes ill-conditioned and non-invertible, making the reconstruction of flow fields from sensor measurements extremely difficult. Although sparse optimization and machine learning address the above problems to some extent, questions about their generalization and efficiency remain, particularly regarding the discretization dependence of these models. In this context, deep operator learning offers a better solution as this approach models mappings between infinite-dimensional functional spaces, enabling superior generalization and discretization-independent reconstruction. We introduce FLRONet, a deep operator learning framework that is trained to reconstruct fluid flow fields from sparse sensor measurements. FLRONet employs a branch-trunk network architecture to represent the inverse measurement operator that maps sensor observations to the original flow field, a continuous function of both space and time. Validation performed on the CFDBench dataset has demonstrated that FLRONet consistently achieves high levels of reconstruction accuracy and robustness, even in scenarios where sensor measurements are inaccurate or missing. Furthermore, the operator learning approach endows FLRONet with the capability to perform zero-shot super-resolution in both spatial and temporal domains, offering a solution for rapid reconstruction of high-fidelity flow fields.
- Abstract(参考訳): スパースセンサー計測から高忠実度流体場を再構築することは、多くの科学・工学的応用に不可欠であるが、状態空間と観測空間の次元的相違により依然として困難である。
このような寸法の違いにより、測定オペレータは不調で非可逆となり、センサ計測による流れ場の再構成が極めて困難になる。
スパース最適化と機械学習は上記の問題にある程度対処するが、その一般化と効率性、特にこれらのモデルの離散化依存性に関する疑問は残る。
この文脈において、深い作用素学習は、無限次元の汎函数空間間の写像をモデル化し、より優れた一般化と離散化非独立な再構成を可能にするため、より良い解を提供する。
本研究では,スパースセンサによる流体流れ場再構築のための深層演算子学習フレームワークであるFLRONetを紹介する。
FLRONetは、逆測定演算子を表現するために分岐トランクネットワークアーキテクチャを使用し、センサーの観測を元の流れ場(空間と時間の両方の連続関数)にマッピングする。
CFDBenchデータセット上で実施された検証では、センサー測定が不正確な場合や欠落の場合であっても、FLRONetは高いレベルの再構築精度と堅牢性を一貫して達成することを示した。
さらに、演算子学習手法は、FLRONetに、空間領域と時間領域の両方でゼロショット超解像を行う能力を与え、高忠実性流れ場を高速に再構築するソリューションを提供する。
関連論文リスト
- FLRNet: A Deep Learning Method for Regressive Reconstruction of Flow Field From Limited Sensor Measurements [0.2621730497733947]
スパースセンサ計測による流れ場再構成のための深層学習手法であるFLRNetを導入する。
各種流動条件およびセンサ構成下でのFLRNetの再構成能力と一般化性について検証した。
論文 参考訳(メタデータ) (2024-11-21T03:40:34Z) - AccFlow: Backward Accumulation for Long-Range Optical Flow [70.4251045372285]
本稿では、長距離光フロー推定のためのAccFlowと呼ばれる新しいリカレントフレームワークを提案する。
従来の前方累積よりも後方累積の方が優れていることを示す。
長距離光流量推定におけるAccFlowの有効性を検証する実験
論文 参考訳(メタデータ) (2023-08-25T01:51:26Z) - Leveraging arbitrary mobile sensor trajectories with shallow recurrent
decoder networks for full-state reconstruction [4.243926243206826]
LSTM(long, short-term memory)ネットワークやデコーダネットワークのようなシーケンス・ツー・ベクター・モデルでは,動的情報を全状態空間推定にマッピング可能であることを示す。
ネットワークアーキテクチャの例外的な性能は、3つのアプリケーションで実証される。
論文 参考訳(メタデータ) (2023-07-20T21:42:01Z) - Unsupervised Cross-Domain Soft Sensor Modelling via Deep
Physics-Inspired Particle Flow Bayes [3.2307729081989334]
クロスドメイン・ソフト・センサ・モデリングのためのディープ・パーティクル・フロー・ベイズ・フレームワークを提案する。
特に、まずシーケンシャルベイズ目標を定式化し、最大推定を行う。
複雑な産業用多相流プロセスシステムにおけるフレームワークの有効性を検証した。
論文 参考訳(メタデータ) (2023-06-08T03:43:32Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
本稿では,RecFNOという優れた性能とメッシュ転送性を備えたエンド・ツー・エンドの物理場再構成手法を提案する。
提案手法は, スパース観測から無限次元空間における流れと熱場への写像を学習することを目的としている。
流体力学および熱力学に関する実験により,提案手法は既存のPOD法およびCNN法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-20T07:20:22Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
高精度な単分子深度推定には長距離相関が不可欠である。
我々は,このグローバルコンテキストを効果的な注意機構でモデル化するためにTransformerを活用することを提案する。
提案したモデルであるDepthFormerは、最先端のモノクル深度推定手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-27T05:03:56Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
本稿では,ディープエンコーダ・デコーダ方式cnnの低次元潜在空間の適応チューニング法を提案する。
粒子加速器における時間変動荷電粒子ビームの特性を予測するためのアプローチを実証する。
論文 参考訳(メタデータ) (2021-05-08T03:50:45Z) - Global field reconstruction from sparse sensors with Voronoi
tessellation-assisted deep learning [0.0]
任意の数の任意の位置センサに対して,構造化格子を用いた深層学習に基づくデータ駆動型空間場復元手法を提案する。
提案手法は,実時間グローバルフィールド推定のためのニューラルネットワークの実用化に向けた新たな道を開く。
論文 参考訳(メタデータ) (2021-01-03T03:43:53Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。