On the Bargmann invariants for quantum imaginarity
- URL: http://arxiv.org/abs/2412.08022v1
- Date: Wed, 11 Dec 2024 02:05:06 GMT
- Title: On the Bargmann invariants for quantum imaginarity
- Authors: Mao-Sheng Li, Yi-Xi Tan,
- Abstract summary: The imaginary in quantum theory plays a crucial role in describing quantum coherence.
We study the structure of Bargmann invariants and their quantum realization in qubit systems.
- Score: 0.0
- License:
- Abstract: The imaginary in quantum theory plays a crucial role in describing quantum coherence and is widely applied in quantum information tasks such as state discrimination, pseudorandomness generation, and quantum metrology. A recent paper by Fernandes et al. [C. Fernandes, R. Wagner, L. Novo, and E. F. Galv\~ao, Phys. Rev. Lett. 133, 190201 (2024) ] showed how to use the Bargmann invariant to witness the imaginarity of a set of quantum states. In this work, we delve into the structure of Bargmann invariants and their quantum realization in qubit systems. First, we present a characterization of special sets of Bargmann invariants (also studied by Fernandes et al. for a set of four states) for a general set of $n$ quantum states. Then, we study the properties of the relevant Bargmann invariant set $\mathcal{B}_n$ and its quantum realization in qubit systems. Our results provide new insights into the structure of Bargmann invariants, contributing to the advancement of quantum information techniques, particularly within qubit systems.
Related papers
- Exact path integrals on half-line in quantum cosmology with a fluid clock and aspects of operator ordering ambiguity [0.0]
We perform $textitexact$ half-line path integral quantization of flat, homogeneous cosmological models containing a perfect fluid acting as an internal clock.
We argue that a particular ordering prescription in the quantum theory can preserve two symmetries.
arXiv Detail & Related papers (2025-01-20T19:00:02Z) - Boundaries of the sets of quantum realizable values of arbitrary order Bargmann invariants [9.999750154847826]
We study the boundaries of quantum-realizable values for Bargmann invariants of arbitrary order.
Our findings uncover intricate connections between Bargmann invariants and imaginarity, offering a unified perspective on the associated boundary curves.
These results enhance our understanding of the physical limits within quantum mechanics and may lead to novel applications of Bargmann invariants in quantum information processing.
arXiv Detail & Related papers (2024-12-12T08:54:11Z) - Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Reading a qubit quantum state with a quantum meter: time unfolding of
quantum Darwinism and quantum information flux [0.0]
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with.
We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours.
arXiv Detail & Related papers (2020-01-30T20:37:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.