Surveying Facial Recognition Models for Diverse Indian Demographics: A Comparative Analysis on LFW and Custom Dataset
- URL: http://arxiv.org/abs/2412.08048v1
- Date: Wed, 11 Dec 2024 02:54:21 GMT
- Title: Surveying Facial Recognition Models for Diverse Indian Demographics: A Comparative Analysis on LFW and Custom Dataset
- Authors: Pranav Pant, Niharika Dadu, Harsh V. Singh, Anshul Thakur,
- Abstract summary: This paper presents a detailed evaluation of both traditional and deep learning-based facial recognition models.
We analyze models ranging from holistic approaches like Eigenfaces and SIFT to advanced hybrid models that integrate CNNs with Gabor filters, Laplacian transforms, and segmentation techniques.
Our findings reveal significant insights into the models' ability to adapt to the ethnic variability within Indian demographics and suggest modifications to enhance accuracy and inclusivity in real-world applications.
- Score: 1.7418008080303395
- License:
- Abstract: Facial recognition technology has made significant advances, yet its effectiveness across diverse ethnic backgrounds, particularly in specific Indian demographics, is less explored. This paper presents a detailed evaluation of both traditional and deep learning-based facial recognition models using the established LFW dataset and our newly developed IITJ Faces of Academia Dataset (JFAD), which comprises images of students from IIT Jodhpur. This unique dataset is designed to reflect the ethnic diversity of India, providing a critical test bed for assessing model performance in a focused academic environment. We analyze models ranging from holistic approaches like Eigenfaces and SIFT to advanced hybrid models that integrate CNNs with Gabor filters, Laplacian transforms, and segmentation techniques. Our findings reveal significant insights into the models' ability to adapt to the ethnic variability within Indian demographics and suggest modifications to enhance accuracy and inclusivity in real-world applications. The JFAD not only serves as a valuable resource for further research but also highlights the need for developing facial recognition systems that perform equitably across diverse populations.
Related papers
- FaceSaliencyAug: Mitigating Geographic, Gender and Stereotypical Biases via Saliency-Based Data Augmentation [46.74201905814679]
We present an approach named FaceSaliencyAug aimed at addressing the gender bias in computer vision models.
We quantify dataset diversity using Image Similarity Score (ISS) across five datasets, including Flickr Faces HQ (FFHQ), WIKI, IMDB, Labelled Faces in the Wild (LFW), UTK Faces, and Diverse dataset.
Our experiments reveal a reduction in gender bias for both CNNs and ViTs, indicating the efficacy of our method in promoting fairness and inclusivity in computer vision models.
arXiv Detail & Related papers (2024-10-17T22:36:52Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - Towards Inclusive Face Recognition Through Synthetic Ethnicity Alteration [11.451395489475647]
We explore ethnicity alteration and skin tone modification using synthetic face image generation methods to increase the diversity of datasets.
We conduct a detailed analysis by first constructing a balanced face image dataset representing three ethnicities: Asian, Black, and Indian.
We then make use of existing Generative Adversarial Network-based (GAN) image-to-image translation and manifold learning models to alter the ethnicity from one to another.
arXiv Detail & Related papers (2024-05-02T13:31:09Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - Zero-shot racially balanced dataset generation using an existing biased
StyleGAN2 [5.463417677777276]
We propose a methodology that leverages the biased generative model StyleGAN2 to create demographically diverse images of synthetic individuals.
By training face recognition models with the resulting balanced dataset containing 50,000 identities per race, we can improve their performance and minimize biases that might have been present in a model trained on a real dataset.
arXiv Detail & Related papers (2023-05-12T18:07:10Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
We propose a mechanism to diversify the features extracted by CNN layers of state-of-the-art facial expression recognition architectures.
Experimental results on three well-known facial expression recognition in-the-wild datasets, AffectNet, FER+, and RAF-DB, show the effectiveness of our method.
arXiv Detail & Related papers (2022-10-17T19:25:28Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - Facial expression and attributes recognition based on multi-task
learning of lightweight neural networks [9.162936410696409]
We examine the multi-task training of lightweight convolutional neural networks for face identification and classification of facial attributes.
It is shown that it is still necessary to fine-tune these networks in order to predict facial expressions.
Several models are presented based on MobileNet, EfficientNet and RexNet architectures.
arXiv Detail & Related papers (2021-03-31T14:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.