論文の概要: DynamicPAE: Generating Scene-Aware Physical Adversarial Examples in Real-Time
- arxiv url: http://arxiv.org/abs/2412.08053v2
- Date: Mon, 23 Dec 2024 02:53:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:20.502266
- Title: DynamicPAE: Generating Scene-Aware Physical Adversarial Examples in Real-Time
- Title(参考訳): DynamicPAE: 実時間におけるシーン認識物理逆転例の生成
- Authors: Jin Hu, Xianglong Liu, Jiakai Wang, Junkai Zhang, Xianqi Yang, Haotong Qin, Yuqing Ma, Ke Xu,
- Abstract要約: 物理敵例(PAEs)は、ディープラーニング応用における現実世界のリスクの「ウィストル・ブロワーズ」と見なされている。
動的PEEの生成における主な課題は、ノイズの多い勾配フィードバックの下でパターンを探索し、シナリオの性質にアタックを適用することである。
静的アタック以外のリアルタイムな物理的アタックを可能にする最初の生成フレームワークであるDynamicPAEを提案する。
- 参考スコア(独自算出の注目度): 31.31528771391594
- License:
- Abstract: Physical adversarial examples (PAEs) are regarded as "whistle-blowers" of real-world risks in deep-learning applications. However, current PAE generation studies show limited adaptive attacking ability to diverse and varying scenes. The key challenges in generating dynamic PAEs are exploring their patterns under noisy gradient feedback and adapting the attack to agnostic scenario natures. To address the problems, we present DynamicPAE, the first generative framework that enables scene-aware real-time physical attacks beyond static attacks. Specifically, to train the dynamic PAE generator under noisy gradient feedback, we introduce the residual-driven sample trajectory guidance technique, which redefines the training task to break the limited feedback information restriction that leads to the degeneracy problem. Intuitively, it allows the gradient feedback to be passed to the generator through a low-noise auxiliary task, thereby guiding the optimization away from degenerate solutions and facilitating a more comprehensive and stable exploration of feasible PAEs. To adapt the generator to agnostic scenario natures, we introduce the context-aligned scene expectation simulation process, consisting of the conditional-uncertainty-aligned data module and the skewness-aligned objective re-weighting module. The former enhances robustness in the context of incomplete observation by employing a conditional probabilistic model for domain randomization, while the latter facilitates consistent stealth control across different attack targets by automatically reweighting losses based on the skewness indicator. Extensive digital and physical evaluations demonstrate the superior attack performance of DynamicPAE, attaining a 1.95 $\times$ boost (65.55% average AP drop under attack) on representative object detectors (e.g., Yolo-v8) over state-of-the-art static PAE generating methods.
- Abstract(参考訳): 物理敵例(PAEs)は、ディープラーニング応用における現実世界のリスクの「ウィストル・ブロワーズ」と見なされている。
しかしながら、現在のPAE生成研究では、多様で多様なシーンに対する適応攻撃能力が制限されている。
動的PEEを生成する上で重要な課題は、ノイズの多い勾配フィードバックの下でパターンを探索し、攻撃を不可知的なシナリオに適応させることである。
この問題に対処するために,静的アタック以外のリアルタイム物理アタックを可能にする,最初の生成フレームワークであるDynamicPAEを提案する。
具体的には、雑音勾配フィードバック下で動的PAE発生装置を訓練するために、残留駆動型サンプル軌道誘導手法を導入し、この訓練タスクを再定義し、縮退問題につながる限られたフィードバック情報制限を破る。
直感的には、低ノイズの補助タスクを通じて勾配フィードバックをジェネレータに渡すことができ、それによって解の退化を回避し、より包括的で安定したPAEの探索を容易にする。
生成元をシナリオの性質に適応させるため,条件不確実性を考慮したデータモジュールと歪に整合した客観的再重み付けモジュールからなるコンテキスト整列シーン予測シミュレーションプロセスを導入する。
前者は、ドメインランダム化のための条件確率モデルを用いることで、不完全観測の文脈においてロバスト性を高める一方、後者は、歪度インジケータに基づいて損失を自動的に重み付けすることで、異なる攻撃対象に対して一貫したステルス制御を促進する。
広範囲にわたるデジタルおよび物理的評価はDynamicPAEの優れた攻撃性能を示し、最先端の静的PAE生成法に対して1.95$\times$ boost(平均APドロップ平均65.55%)を代表対象検出器(例:Yolo-v8)に対して達成した。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
本稿では,クロスアテンションに基づく符号化と復号の対称スキームを用いて,画像固有の摂動を生成する新しいソリューションであるPADLを紹介する。
提案手法は,StarGANv2,BlendGAN,DiffAE,StableDiffusion,StableDiffusionXLなど,さまざまなアーキテクチャ設計の未確認モデルに一般化する。
論文 参考訳(メタデータ) (2024-09-26T15:16:32Z) - Embodied Laser Attack:Leveraging Scene Priors to Achieve Agent-based Robust Non-contact Attacks [13.726534285661717]
本稿では,非接触レーザー攻撃を動的に調整する新しい枠組みであるEmbodied Laser Attack (ELA)を紹介する。
認識モジュールのために,ERAは交通シーンの本質的な事前知識に基づいて,局所的な視点変換ネットワークを革新的に開発してきた。
決定と制御モジュールのために、ERAは時間を要するアルゴリズムを採用する代わりに、データ駆動の強化学習で攻撃エージェントを訓練する。
論文 参考訳(メタデータ) (2023-12-15T06:16:17Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Exploring the Physical World Adversarial Robustness of Vehicle Detection [13.588120545886229]
アドリアックは現実世界の検知モデルの堅牢性を損なう可能性がある。
CARLAシミュレータを用いた革新的なインスタントレベルデータ生成パイプラインを提案する。
本研究は, 逆境条件下での多種多様なモデル性能について考察した。
論文 参考訳(メタデータ) (2023-08-07T11:09:12Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
生成モデルによって作成された悪意のある視覚コンテンツであるディープフェイクは、社会にますます有害な脅威をもたらす。
近年のディープフェイクの損傷を積極的に軽減するために, 逆方向の摂動を用いてディープフェイクモデルの出力を妨害する研究が進められている。
そこで本研究では,Latent Ensemble ATtack (LEAT) と呼ばれる簡易かつ効果的なディスラプション手法を提案する。
論文 参考訳(メタデータ) (2023-07-04T07:00:37Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Towards Robust Unsupervised Disentanglement of Sequential Data -- A Case
Study Using Music Audio [17.214062755082065]
Disentangled Sequence Autoencoder (DSAE) は確率的グラフィカルモデルのクラスを表す。
バニラDSAEはモデルアーキテクチャの選択や動的潜伏変数の容量に敏感であることを示す。
本稿では,まずシーケンスレベルの事前分布を学習する2段階のトレーニングフレームワークTS-DSAEを提案する。
論文 参考訳(メタデータ) (2022-05-12T04:11:25Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。