論文の概要: Inverse Reinforcement Learning for Minimum-Exposure Paths in Spatiotemporally Varying Scalar Fields
- arxiv url: http://arxiv.org/abs/2503.06611v1
- Date: Sun, 09 Mar 2025 13:30:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:45:05.038301
- Title: Inverse Reinforcement Learning for Minimum-Exposure Paths in Spatiotemporally Varying Scalar Fields
- Title(参考訳): 時空間変動スカラー場における最小露光経路の逆強化学習
- Authors: Alexandra E. Ballentine, Raghvendra V. Cowlagi,
- Abstract要約: このようなパスのトレーニングデータセットに類似した最小露出パスのデータセットを合成する問題を考える。
本論文の主な貢献は、この問題を解決するための逆強化学習(IRL)モデルである。
提案したIRLモデルは,トレーニングデータセットにない初期条件から経路を合成する際の優れた性能を提供する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License:
- Abstract: Performance and reliability analyses of autonomous vehicles (AVs) can benefit from tools that ``amplify'' small datasets to synthesize larger volumes of plausible samples of the AV's behavior. We consider a specific instance of this data synthesis problem that addresses minimizing the AV's exposure to adverse environmental conditions during travel to a fixed goal location. The environment is characterized by a threat field, which is a strictly positive scalar field with higher intensities corresponding to hazardous and unfavorable conditions for the AV. We address the problem of synthesizing datasets of minimum exposure paths that resemble a training dataset of such paths. The main contribution of this paper is an inverse reinforcement learning (IRL) model to solve this problem. We consider time-invariant (static) as well as time-varying (dynamic) threat fields. We find that the proposed IRL model provides excellent performance in synthesizing paths from initial conditions not seen in the training dataset, when the threat field is the same as that used for training. Furthermore, we evaluate model performance on unseen threat fields and find low error in that case as well. Finally, we demonstrate the model's ability to synthesize distinct datasets when trained on different datasets with distinct characteristics.
- Abstract(参考訳): 自律走行車(AV)の性能と信頼性の分析は、小さなデータセットを‘増幅’して、AVの振る舞いの可塑性サンプルを大量に合成するツールの恩恵を受けることができる。
本稿では,このデータ合成問題の具体例として,固定目標地点への移動中におけるAVの有害環境への曝露を最小限に抑えることを考える。
この環境は、AVにとって有害で好ましくない条件に対応する高い強度を持つ厳密な正のスカラー場である脅威場によって特徴づけられる。
このようなパスのトレーニングデータセットに似た最小露出パスのデータセットを合成する問題に対処する。
本論文の主な貢献は、この問題を解決するための逆強化学習(IRL)モデルである。
時間不変(静的)および時間変化(動的)脅威場を考える。
提案したIRLモデルは,トレーニングデータセットにない初期条件からの経路合成において,脅威場がトレーニングに使用されるものと同一である場合に優れた性能を提供する。
さらに、未確認脅威場におけるモデル性能を評価し、その場合の誤差も低くする。
最後に、異なる特徴を持つ異なるデータセットでトレーニングされた時に、異なるデータセットを合成するモデルの能力を実証する。
関連論文リスト
- Data Augmentation with Variational Autoencoder for Imbalanced Dataset [1.2289361708127877]
不均衡分布からの学習は予測モデリングにおいて大きな課題となる。
VAEとスムーズなブートストラップを組み合わせた新しいデータ生成手法を開発し,IRの課題に対処する。
論文 参考訳(メタデータ) (2024-12-09T22:59:03Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples [58.68233326265417]
非画像データは実際のアプリケーションで広く使われており、ノイズが多い傾向にある。
リスク感受性SDEは、リスクベクトルによってパラメータ化された微分方程式(SDE)の一種である。
我々はガウス雑音分布と非ガウス雑音分布の両方について系統的研究を行う。
論文 参考訳(メタデータ) (2024-02-03T08:41:51Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
本稿では,機械学習パスロス予測のための新しいシミュレーション強化データ拡張手法を提案する。
本手法は,細胞被覆シミュレータから生成した合成データと,独立して収集した実世界のデータセットを統合する。
合成データの統合は、異なる環境におけるモデルの一般化可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-02-03T00:38:08Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - A Novel Dataset for Evaluating and Alleviating Domain Shift for Human
Detection in Agricultural Fields [59.035813796601055]
トレーニングセットの分布外のデータに展開した場合、ドメインシフトが、よく知られたオブジェクト検出データセット上で訓練された人間の検出モデルに与える影響を評価する。
我々は、ロボットティプラットフォームを用いて、農業ロボット応用の文脈で収集されたOpenDR Humans in Fieldデータセットを紹介した。
論文 参考訳(メタデータ) (2022-09-27T07:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。