Dynamic Classification of Latent Disease Progression with Auxiliary Surrogate Labels
- URL: http://arxiv.org/abs/2412.08088v1
- Date: Wed, 11 Dec 2024 04:14:15 GMT
- Title: Dynamic Classification of Latent Disease Progression with Auxiliary Surrogate Labels
- Authors: Zexi Cai, Donglin Zeng, Karen S. Marder, Lawrence S. Honig, Yuanjia Wang,
- Abstract summary: Disease progression prediction based on evolving health information is challenging when true disease states are unknown.
We develop an adaptive forward-backward algorithm with subjective labels for estimation.
Asymptotic properties are established, and significant improvement with finite samples is demonstrated.
- Score: 4.997489272248076
- License:
- Abstract: Disease progression prediction based on patients' evolving health information is challenging when true disease states are unknown due to diagnostic capabilities or high costs. For example, the absence of gold-standard neurological diagnoses hinders distinguishing Alzheimer's disease (AD) from related conditions such as AD-related dementias (ADRDs), including Lewy body dementia (LBD). Combining temporally dependent surrogate labels and health markers may improve disease prediction. However, existing literature models informative surrogate labels and observed variables that reflect the underlying states using purely generative approaches, limiting the ability to predict future states. We propose integrating the conventional hidden Markov model as a generative model with a time-varying discriminative classification model to simultaneously handle potentially misspecified surrogate labels and incorporate important markers of disease progression. We develop an adaptive forward-backward algorithm with subjective labels for estimation, and utilize the modified posterior and Viterbi algorithms to predict the progression of future states or new patients based on objective markers only. Importantly, the adaptation eliminates the need to model the marginal distribution of longitudinal markers, a requirement in traditional algorithms. Asymptotic properties are established, and significant improvement with finite samples is demonstrated via simulation studies. Analysis of the neuropathological dataset of the National Alzheimer's Coordinating Center (NACC) shows much improved accuracy in distinguishing LBD from AD.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by diverse progression rates among individuals.
We propose a conditional score-based diffusion model to generate CTh trajectories with the given baseline information.
Our model has a near-zero bias with narrow confidential 95% interval compared to the ground-truth CTh in 6-36 months.
arXiv Detail & Related papers (2024-03-11T17:26:18Z) - HGIB: Prognosis for Alzheimer's Disease via Hypergraph Information
Bottleneck [3.8988556182958005]
We propose a novel hypergraph framework based on an information bottleneck strategy (HGIB)
Our framework seeks to discriminate irrelevant information, and therefore, solely focus on harmonising relevant information for future MCI conversion prediction.
We demonstrate, through extensive experiments on ADNI, that our proposed HGIB framework outperforms existing state-of-the-art hypergraph neural networks for Alzheimer's disease prognosis.
arXiv Detail & Related papers (2023-03-18T10:53:43Z) - LAVA: Granular Neuron-Level Explainable AI for Alzheimer's Disease
Assessment from Fundus Images [15.02513291695459]
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia.
The retina has been hypothesized as a diagnostic site for AD detection owing to its anatomical connection with the brain.
We propose a novel model-agnostic explainable-AI framework, called Granular Neuron-level Explainer (LAVA)
arXiv Detail & Related papers (2023-02-06T18:43:10Z) - Toward a multimodal multitask model for neurodegenerative diseases
diagnosis and progression prediction [0.5735035463793008]
This article overviews various categories of models used for Alzheimer's disease prediction with their respective learning methods.
It establishes a comparative study of early prediction and detection Alzheimer's disease progression.
Finally, a robust and precise detection model is proposed.
arXiv Detail & Related papers (2021-10-10T11:44:16Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.