論文の概要: Adversarial Vulnerabilities in Large Language Models for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2412.08099v3
- Date: Tue, 28 Jan 2025 17:33:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:39:47.343422
- Title: Adversarial Vulnerabilities in Large Language Models for Time Series Forecasting
- Title(参考訳): 時系列予測のための大規模言語モデルにおける敵対的脆弱性
- Authors: Fuqiang Liu, Sicong Jiang, Luis Miranda-Moreno, Seongjin Choi, Lijun Sun,
- Abstract要約: 本稿では,Large Language Models (LLMs) に基づく時系列予測のための攻撃フレームワークを提案する。
実験により, 対向攻撃は, ランダムノイズよりもはるかに深刻な性能劣化を引き起こすことが示された。
- 参考スコア(独自算出の注目度): 14.579802892916101
- License:
- Abstract: Large Language Models (LLMs) have recently demonstrated significant potential in the field of time series forecasting, offering impressive capabilities in handling complex temporal data. However, their robustness and reliability in real-world applications remain under-explored, particularly concerning their susceptibility to adversarial attacks. In this paper, we introduce a targeted adversarial attack framework for LLM-based time series forecasting. By employing both gradient-free and black-box optimization methods, we generate minimal yet highly effective perturbations that significantly degrade the forecasting accuracy across multiple datasets and LLM architectures. Our experiments, which include models like TimeGPT and LLM-Time with GPT-3.5, GPT-4, LLaMa, and Mistral, show that adversarial attacks lead to much more severe performance degradation than random noise, and demonstrate the broad effectiveness of our attacks across different LLMs. The results underscore the critical vulnerabilities of LLMs in time series forecasting, highlighting the need for robust defense mechanisms to ensure their reliable deployment in practical applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は、最近、時系列予測の分野で大きな可能性を実証し、複雑な時間的データを扱うための素晴らしい能力を提供している。
しかしながら、現実世界のアプリケーションにおける堅牢性と信頼性は、特に敵の攻撃に対する感受性に関して、未調査のままである。
本稿では,LLMに基づく時系列予測のための対向攻撃フレームワークを提案する。
グラデーションフリーとブラックボックス最適化の両方を用いることで、複数のデータセットとLLMアーキテクチャの予測精度を著しく低下させる最小かつ高効率な摂動を生成する。
GPT-3.5, GPT-4, LLaMa, Mistral を用いた TimeGPT や LLM-Time などのモデルを用いた実験により, 対向攻撃はランダムノイズよりもはるかに深刻な性能劣化を招き, 異なる LLM に対する攻撃の有効性を実証した。
その結果、時系列予測におけるLCMの重大な脆弱性を浮き彫りにし、実用アプリケーションへの信頼性を確保するための堅牢な防御メカニズムの必要性を強調した。
関連論文リスト
- BACKTIME: Backdoor Attacks on Multivariate Time Series Forecasting [43.43987251457314]
本稿では,BackTime という効果的な攻撃手法を提案する。
MTSデータにいくつかのステルスなトリガを微妙に注入することで、BackTimeは攻撃者の意図に応じて予測モデルの予測を変更することができる。
BackTimeは、まずデータ中の有害なタイムスタンプを特定し、次に、ステルスで効果的なトリガーを適応的に合成する。
論文 参考訳(メタデータ) (2024-10-03T04:16:49Z) - Beam Prediction based on Large Language Models [51.45077318268427]
ミリ波(mmWave)通信は次世代無線ネットワークに期待できるが、パス損失は大きい。
長短期記憶(LSTM)のような従来のディープラーニングモデルでは、ビーム追跡精度が向上するが、ロバスト性や一般化が不足している。
本稿では,大規模言語モデル(LLM)を用いて,ビーム予測の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-08-16T12:40:01Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
現在の緩和戦略は効果はあるものの、敵の攻撃下では弾力性がない。
本稿では,大規模言語モデルのための弾力性ガードレール(RigorLLM)について紹介する。
論文 参考訳(メタデータ) (2024-03-19T07:25:02Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
大規模言語モデル(LLM)は多くの分野に適用され、近年急速に発展してきた。
近年の研究では、大規模な言語モデルを、さらなる微調整を行なわずに、アンフェロショット時系列推論として扱っている。
本研究は,LLMが周期性に欠けるデータセットにおいて,明確なパターンや傾向を持つ時系列予測において良好に機能することを示す。
論文 参考訳(メタデータ) (2024-02-16T17:15:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series
Forecasters [12.887118862534331]
事前学習された大言語モデル(LLM)を用いた時系列予測のためのフレームワークを提案する。
LLM4TSは、LLMを時系列データのニュアンスに合わせるための2段階の微調整戦略と、下流の時系列予測タスクのためのテキスト予測微調整ステージから構成される。
我々のフレームワークは、事前訓練されたLLM内に多段階の時間データを統合し、時間固有の情報を解釈する能力を向上する新しい2段階集約手法を特徴としている。
論文 参考訳(メタデータ) (2023-08-16T16:19:50Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - An Attention Free Long Short-Term Memory for Time Series Forecasting [0.0]
本研究では,より効率的なフレームワークであるアテンションフリー機構を用いた時系列予測に着目し,時系列予測のための新しいアーキテクチャを提案する。
本研究では,無注意LSTM層を用いて,条件分散予測のための線形モデルを克服するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-20T08:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。