論文の概要: DAKD: Data Augmentation and Knowledge Distillation using Diffusion Models for SAR Oil Spill Segmentation
- arxiv url: http://arxiv.org/abs/2412.08116v1
- Date: Wed, 11 Dec 2024 05:50:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:31.807897
- Title: DAKD: Data Augmentation and Knowledge Distillation using Diffusion Models for SAR Oil Spill Segmentation
- Title(参考訳): DAKD:SARオイルスパイルセグメンテーションのための拡散モデルを用いたデータ拡張と知識蒸留
- Authors: Jaeho Moon, Jeonghwan Yun, Jaehyun Kim, Jaehyup Lee, Munchurl Kim,
- Abstract要約: 本稿では,拡散に基づくSAR-JointNetを用いて,現実的なSAR画像とそのラベルのセグメンテーションを学習する。
DAKDパイプラインはトレーニングデータセットを拡張し、SAR-JointNetから知識を抽出する。
SAROSS-Netはノイズの多いSAR画像から高周波特徴を選択的に転送するように設計されている。
- 参考スコア(独自算出の注目度): 23.48547745185572
- License:
- Abstract: Oil spills in the ocean pose severe environmental risks, making early detection essential. Synthetic aperture radar (SAR) based oil spill segmentation offers robust monitoring under various conditions but faces challenges due to the limited labeled data and inherent speckle noise in SAR imagery. To address these issues, we propose (i) a diffusion-based Data Augmentation and Knowledge Distillation (DAKD) pipeline and (ii) a novel SAR oil spill segmentation network, called SAROSS-Net. In our DAKD pipeline, we present a diffusion-based SAR-JointNet that learns to generate realistic SAR images and their labels for segmentation, by effectively modeling joint distribution with balancing two modalities. The DAKD pipeline augments the training dataset and distills knowledge from SAR-JointNet by utilizing generated soft labels (pixel-wise probability maps) to supervise our SAROSS-Net. The SAROSS-Net is designed to selectively transfer high-frequency features from noisy SAR images, by employing novel Context-Aware Feature Transfer blocks along skip connections. We demonstrate our SAR-JointNet can generate realistic SAR images and well-aligned segmentation labels, providing the augmented data to train SAROSS-Net with enhanced generalizability. Our SAROSS-Net trained with the DAKD pipeline significantly outperforms existing SAR oil spill segmentation methods with large margins.
- Abstract(参考訳): 海洋の石油流出は環境に深刻なリスクをもたらし、早期発見が不可欠である。
合成開口レーダ(SAR)に基づくオイル流出セグメンテーションは、様々な条件下で堅牢なモニタリングを提供するが、ラベル付きデータとSAR画像の固有のスペックルノイズのために課題に直面している。
これらの問題に対処するために,我々は提案する
i)拡散に基づくデータ拡張・知識蒸留(DAKD)パイプライン及び
(II) SAROSS-Netと呼ばれる新しいSARオイル流出セグメンテーションネットワーク。
DAKDパイプラインでは,2つのモードのバランスをとる共同分布を効果的にモデル化することにより,現実的なSAR画像とそのラベルを生成することを学習する拡散型SAR-JointNetを提案する。
DAKDパイプラインはトレーニングデータセットを拡張し、生成したソフトラベル(ピクセル単位の確率マップ)を利用してSAROSS-Netを監督することで、SAR-JointNetから知識を抽出する。
SAROSS-Netは、新しいContext-Aware Feature Transferブロックをスキップ接続に沿って使用することにより、ノイズの多いSAR画像から高周波特徴を選択的に転送するように設計されている。
我々は、SAR-JointNetが現実的なSAR画像とよく整合したセグメンテーションラベルを生成することを実証し、SAROSS-Netを拡張可能な拡張データを提供する。
DAKDパイプラインで訓練したSAROSS-Netは,既存のSARオイル流出セグメンテーション法を,大きなマージンで大幅に上回っている。
関連論文リスト
- Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture [23.375515181854254]
SSL(Self-Supervised Learning)手法は,大規模未ラベルデータの事前学習を伴う様々なSAR自動ターゲット認識(ATR)タスクを実現する。
SSLはデータから直接監視信号を構築することを目的としている。
本研究では,SAR ATRの基盤モデル構築に有効なSSL方式について検討した。
論文 参考訳(メタデータ) (2023-11-26T01:05:55Z) - SRCNet: Seminal Representation Collaborative Network for Marine Oil
Spill Segmentation [18.96012241344086]
本研究では,SRCNet という油流出画像分割ネットワークを提案する。
SAR画像を記述するセミナル表現の協調により、ディープニューラルネットワークのペアで構築される。
提案するSRCNetは,効率的な石油流出セグメンテーションを経済的かつ効率的に運用する。
論文 参考訳(メタデータ) (2023-04-17T13:23:03Z) - DGNet: Distribution Guided Efficient Learning for Oil Spill Image
Segmentation [18.43215454505496]
SAR(Synthetic Aperture Radar)画像における油流出セグメンテーションの実施は,海洋環境保護に不可欠である。
我々は,SAR画像にバックスキャッタ値の内在分布を組み込むことで,石油流出セグメンテーションを行うDGNetという効果的なセグメンテーションフレームワークを開発した。
提案したDGNetのセグメンテーション性能を異なるメトリクスで評価し,その有効セグメンテーションを実験的に評価した。
論文 参考訳(メタデータ) (2022-12-19T18:23:50Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
論文 参考訳(メタデータ) (2022-03-29T12:27:04Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Oil Spill SAR Image Segmentation via Probability Distribution Modelling [18.72207562693259]
本研究の目的は,SAR画像における海洋油流出の同定に有効なセグメンテーション手法を開発することである。
我々は,オイル流出SAR画像の確率分布表現を達成するために,SAR撮像機構を再検討する。
次に, 油流出特性を組み込んだセグメンテーションエネルギー関数を定式化するために, 分布表現を利用する。
論文 参考訳(メタデータ) (2021-12-17T17:22:29Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
光リモートセンシング画像(RSI)における有意物体検出のためのエンド・ツー・エンドDense Attention Fluid Network(DAFNet)を提案する。
GCA(Global Context-Aware Attention)モジュールは、長距離の意味的関係を適応的にキャプチャするために提案される。
我々は、2000枚の画像とピクセルワイドなサリエンシアノテーションを含むSODのための新しい、挑戦的な光学RSIデータセットを構築した。
論文 参考訳(メタデータ) (2020-11-26T06:14:10Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
強い表現力を持つ深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像(SISR)において印象的な性能を達成した
情報抽出・拡張ブロック(IEEB)、再構築ブロック(RB)、情報精製ブロック(IRB)の3つの連続したサブブロックを持つ軽量拡張SR CNN(LESRCNN)を提案する。
IEEBは階層的低分解能(LR)特徴を抽出し、SISRの深い層上の浅い層の記憶能力を高めるために、得られた特徴を段階的に集約する。
RBはグローバルに拡散することで低周波特徴を高周波特徴に変換する
論文 参考訳(メタデータ) (2020-07-08T18:03:40Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。