The robustness of entanglement in non-Hermitian cavity optomechanical system even away from exceptional points
- URL: http://arxiv.org/abs/2412.08123v1
- Date: Wed, 11 Dec 2024 06:18:05 GMT
- Title: The robustness of entanglement in non-Hermitian cavity optomechanical system even away from exceptional points
- Authors: Jia-Jia Wang, Yu-Hong He, Chang-Geng Liao, Rong-Xin Chen, Jacob A. Dunningham,
- Abstract summary: Quantum physics can be extended into the complex domain by considering non-Hermitian Hamiltonians that are $mathcalPT$-symmetric.
We find that the sudden disappearance of entanglement can be mitigated at EPs (similar to $mathcalPT$-symmetric systems) but also show that the revival of entanglement is quite robust to thermal noise in a group of parameters away from the EPs.
- Score: 2.778721019132512
- License:
- Abstract: Quantum physics can be extended into the complex domain by considering non-Hermitian Hamiltonians that are $\mathcal{PT}$-symmetric. These exhibit exceptional points (EPs) where the eigenspectrum changes from purely real to purely imaginary values and have useful properties enabling applications such as accelerated entanglement generation and the delay of the sudden death of entanglement in noisy systems. An interesting question is whether similar beneficial effects can be achieved away from EPs, since this would extend the available parameter space and make experiments more accessible. We investigate this by considering the more general case of pseudo-Hermitian Hamiltonians where two-mode squeezing interactions are incorporated into a $\mathcal{PT}$-symmetric optomechanical system. The addition of squeezing is motivated by an attempt to extend the lifetime of the system's entanglement. We derive analytic expressions for the entanglement dynamics under noise-free conditions and present numerical simulations that include the effects of noise. Although we find that the two-mode squeezing interactions do not generally preserve the initial entanglement, rich dynamics are observed in both the pseudo-Hermitian and $\mathcal{PT}$-symmetric cases, including the sudden death and revival of entanglement under certain conditions. We find that the sudden disappearance of entanglement can be mitigated at EPs (similar to $\mathcal{PT}$-symmetric systems) but also show that the revival of entanglement is quite robust to thermal noise in a group of parameters away from the EPs. Our study extends our understanding of non-Hermitian systems and opens a new perspective for the development of quantum devices in non-Hermitian systems even away from EPs.
Related papers
- Quantum Noise Suppression in Non-Hermitian Resonators at Exceptional Point [0.0]
We investigate the impact of quantum noise on non-Hermitian resonators at an exceptional point (EP)
The system's irreversible Markovian dynamics is modeled using the Lindblad master equation.
Out of the $mathcalPmathcalT$-symmetric regime, however, the system demonstrates stability within a specific parametric domain.
arXiv Detail & Related papers (2025-01-14T15:13:10Z) - Programmable simulation of high-order exceptional point with a trapped ion [20.656857180988926]
We experimentally demonstrate a native programmable control to simulate a high-order non-Hermitian Hamiltonian in a multi-dimensional trapped ion system.
Our results pave the way for scalable quantum simulation of high-dimensional dissipative systems.
arXiv Detail & Related papers (2024-12-13T01:00:22Z) - Robust analog quantum simulators by quantum error-detecting codes [22.034646136056804]
We provide a recipe for error-resilient Hamiltonian simulations, making use of an excited encoding subspace stabilized by solely $2$-local commuting Hamiltonians.
Our method is scalable as it only requires penalty terms that scale to system size.
arXiv Detail & Related papers (2024-12-10T18:58:05Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully adjustable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
We show a quantum simulator system that consists of a continuously driven Kerr parametric oscillator with a third order non-linearity that can be operated in the quantum regime to create a fully asymmetric double-well.
Our work is a first step for the development of analog molecule simulators of proton transfer reactions based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Emergent non-Hermitian localization phenomena in the synthetic space of
zero-dimensional bosonic systems [0.0]
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research.
We show how the non-Hermitian localization phenomena can naturally emerge in the synthetic field moments space of zero-dimensional bosonic systems.
arXiv Detail & Related papers (2021-10-28T16:44:52Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.