DiffRaman: A Conditional Latent Denoising Diffusion Probabilistic Model for Bacterial Raman Spectroscopy Identification Under Limited Data Conditions
- URL: http://arxiv.org/abs/2412.08131v1
- Date: Wed, 11 Dec 2024 06:36:55 GMT
- Title: DiffRaman: A Conditional Latent Denoising Diffusion Probabilistic Model for Bacterial Raman Spectroscopy Identification Under Limited Data Conditions
- Authors: Haiming Yao, Wei Luo, Ang Gao, Tao Zhou, Xue Wang,
- Abstract summary: This paper proposes a data generation method utilizing deep generative models to expand the data volume and enhance the recognition accuracy of bacterial Raman spectra.
Experimental results demonstrate that synthetic bacterial Raman spectra generated by DiffRaman can effectively emulate real experimental spectra.
- Score: 11.586869210490628
- License:
- Abstract: Raman spectroscopy has attracted significant attention in various biochemical detection fields, especially in the rapid identification of pathogenic bacteria. The integration of this technology with deep learning to facilitate automated bacterial Raman spectroscopy diagnosis has emerged as a key focus in recent research. However, the diagnostic performance of existing deep learning methods largely depends on a sufficient dataset, and in scenarios where there is a limited availability of Raman spectroscopy data, it is inadequate to fully optimize the numerous parameters of deep neural networks. To address these challenges, this paper proposes a data generation method utilizing deep generative models to expand the data volume and enhance the recognition accuracy of bacterial Raman spectra. Specifically, we introduce DiffRaman, a conditional latent denoising diffusion probability model for Raman spectra generation. Experimental results demonstrate that synthetic bacterial Raman spectra generated by DiffRaman can effectively emulate real experimental spectra, thereby enhancing the performance of diagnostic models, especially under conditions of limited data. Furthermore, compared to existing generative models, the proposed DiffRaman offers improvements in both generation quality and computational efficiency. Our DiffRaman approach offers a well-suited solution for automated bacteria Raman spectroscopy diagnosis in data-scarce scenarios, offering new insights into alleviating the labor of spectroscopic measurements and enhancing rare bacteria identification.
Related papers
- DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMS is a formula-restricted encoder-decoder generative network.
We develop a robust decoder that bridges latent embeddings and molecular structures.
Experiments show DiffMS outperforms existing models on $textitde novo$ molecule generation.
arXiv Detail & Related papers (2025-02-13T18:29:48Z) - A Robust Support Vector Machine Approach for Raman COVID-19 Data Classification [0.7864304771129751]
In this paper, we investigate the performance of a novel robust formulation for Support Vector Machine (SVM) in classifying COVID-19 samples obtained from Raman spectroscopy.
We derive robust counterpart models of deterministic formulations using bounded-by-norm uncertainty sets around each observation.
The effectiveness of our approach is validated on real-world COVID-19 datasets provided by Italian hospitals.
arXiv Detail & Related papers (2025-01-29T14:02:45Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
Powder X-ray diffraction analysis is a critical component of materials characterization methodologies.
Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra.
Here, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification.
arXiv Detail & Related papers (2022-11-16T00:36:13Z) - Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for
Spectral Classification of Chinese Liquors [0.0]
We propose a pre-training method of deep bidirectional transformers for spectral classification of Chinese liquors, abbreviated as Spectrum-BERT.
We elaborately design two pre-training tasks, Next Curve Prediction (NCP) and Masked Curve Model (MCM), so that the model can effectively utilize unlabeled samples.
In the comparative experiments, the proposed Spectrum-BERT significantly outperforms the baselines in multiple metrics.
arXiv Detail & Related papers (2022-10-22T13:11:25Z) - Frequency comb and machine learning-based breath analysis for COVID-19
classification [0.6113111451963646]
We present a robust analytical method that simultaneously measures tens of thousands of spectral features in each breath sample.
Using 170 individual samples at the University of Colorado, we report a cross-validated area under the Receiver-Operating-Characteristics curve of 0.849(4).
This method detected a significant difference between male and female breath as well as other variables such as smoking and abdominal pain.
arXiv Detail & Related papers (2022-02-04T05:58:52Z) - A Novel CropdocNet for Automated Potato Late Blight Disease Detection
from the Unmanned Aerial Vehicle-based Hyperspectral Imagery [3.3283767441645478]
Late blight disease is one of the most destructive diseases in potato crop, leading to serious yield losses globally.
Current farm practices in crop disease diagnosis are based on manual visual inspection, which is costly, time consuming, subject to individual bias.
Recent advances in imaging sensors (e.g. RGB, multiple spectral and hyperspectral cameras), remote sensing and machine learning offer the opportunity to address this challenge.
arXiv Detail & Related papers (2021-07-28T11:18:48Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.