論文の概要: Intelligent Electric Power Steering: Artificial Intelligence Integration Enhances Vehicle Safety and Performance
- arxiv url: http://arxiv.org/abs/2412.08133v1
- Date: Wed, 11 Dec 2024 06:41:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:01:10.635451
- Title: Intelligent Electric Power Steering: Artificial Intelligence Integration Enhances Vehicle Safety and Performance
- Title(参考訳): インテリジェントパワーステアリング - 自動運転車の安全性と性能を高める人工知能統合
- Authors: Vikas Vyas, Sneha Sudhir Shetiya,
- Abstract要約: 電動パワーステアリング(EPS)システムは、電動モーターを使用して車両のステアリングを支援する。
本稿では,人工知能(AI)と電力ステアリング(EPS)システムの統合について説明する。
レーン制御(LCC)、自動駐車システム(Automated Parking Systems)、自律走行ステアリング(Autonomous Vehicle Steering)など、EPSにおけるAI応用のケーススタディ。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Electric Power Steering (EPS) systems utilize electric motors to aid users in steering their vehicles, which provide additional precise control and reduced energy consumption compared to traditional hydraulic systems. EPS technology provides safety,control and efficiency.. This paper explains the integration of Artificial Intelligence (AI) into Electric Power Steering (EPS) systems, focusing on its role in enhancing the safety, and adaptability across diverse driving conditions. We explore significant development in AI-driven EPS, including predictive control algorithms, adaptive torque management systems, and data-driven diagnostics. The paper presents case studies of AI applications in EPS, such as Lane centering control (LCC), Automated Parking Systems, and Autonomous Vehicle Steering, while considering the challenges, limitations, and future prospects of this technology. This article discusses current developments in AI-driven EPS, emphasizing on the benefits of improved safety, adaptive control, and predictive maintenance. Challenges in integrating AI in EPS systems. This paper addresses cybersecurity risks, ethical concerns, and technical limitations,, along with next steps for research and implementation in autonomous, and connected vehicles.
- Abstract(参考訳): 電動パワーステアリング(EPS)システムは、電動モーターを使用して車両のステアリングを支援し、従来の油圧システムと比較して、より正確な制御とエネルギー消費の削減を提供する。
EPS技術は安全、制御、効率を提供する。
と。
本稿では、人工知能(AI)を電力ステアリング(EPS)システムに統合することについて説明する。
予測制御アルゴリズム,適応トルク管理システム,データ駆動診断など,AI駆動型EPSの大幅な発展について検討する。
本稿では,車線中心制御(LCC),自動駐車システム(Automated Parking Systems),自律走行ステアリング(Autonomous Vehicle Steering)などのEPSにおけるAI応用事例について,その課題,限界,今後の展望を考察した。
本稿では、AI駆動型EPSの現在の発展について論じ、安全性の向上、適応制御、予測保守のメリットを強調します。
EPSシステムにAIを統合する際の課題。
本稿では, サイバーセキュリティのリスク, 倫理的懸念, 技術的制約に対処し, 自動運転車とコネクテッドカーの研究と実装の次のステップについて述べる。
関連論文リスト
- Generative AI Agents in Autonomous Machines: A Safety Perspective [9.02400798202199]
生成AIエージェントは、非並列機能を提供するが、ユニークな安全性上の懸念もある。
本研究では、生成モデルが物理自律機械にエージェントとして統合される際の安全要件の進化について検討する。
我々は、自律機械で生成AI技術を使用するための総合的な安全スコアカードの開発と実装を推奨する。
論文 参考訳(メタデータ) (2024-10-20T20:07:08Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study [0.7851536646859475]
System-Theoretic Process Analysis (STPA)は、防衛や航空宇宙といった安全関連分野に適用される新しい手法である。
STPAは、分散システム開発とマルチアトラクション設計レベルを備えた自動車システム工学において、完全には有効でない前提条件を前提としている。
これは継続的開発とデプロイメントにおける保守性の問題と見なすことができる。
論文 参考訳(メタデータ) (2024-03-14T15:56:02Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - The Role of Intelligent Transportation Systems and Artificial
Intelligence in Energy Efficiency and Emission Reduction [4.847470451539329]
我々は、将来のエネルギー・排出削減(EER)における知的輸送システム(ITS)と人工知能(AI)の役割を探求する。
具体的には、異なるレベルのITSセンサーがEERの改善に与える影響について論じる。
また、ITSにおけるネットワーク接続の可能性についても検討し、それらがEERをどのように改善するかを例示する。
論文 参考訳(メタデータ) (2024-01-25T23:07:32Z) - Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward [0.0]
この章は、自動運転車の複雑な領域を探求し、その基本的な構成要素と運用上の特性を分析します。
この調査の主な焦点は、サイバーセキュリティの領域、特に自動運転車の文脈にある。
これらの車両を潜在的な脅威から保護することを目的とした様々なリスク管理ソリューションについて、包括的な分析を行う。
論文 参考訳(メタデータ) (2023-09-25T15:19:09Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
本稿では、自律制御、説明可能なAI(XAI)、規制コンプライアンスを統合するフレームワークを提案する。
フレームワークの目標を達成するのに役立つ、関連するXAIアプローチについて説明します。
論文 参考訳(メタデータ) (2021-11-20T05:06:22Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z) - A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State
Analysis [164.93739293097605]
EEGは運転状態のモニタリングとヒューマンエラー検出において最も効果的な方法の1つであることが証明されている。
本稿では,過去30年間の脳波に基づく運転状態検出システムとその解析アルゴリズムについて論じる。
現在のEEGベースの運転状態監視アルゴリズムは、安全アプリケーションに有望である、と結論付けている。
論文 参考訳(メタデータ) (2020-08-25T18:21:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。