論文の概要: Code LLMs: A Taxonomy-based Survey
- arxiv url: http://arxiv.org/abs/2412.08291v1
- Date: Wed, 11 Dec 2024 11:07:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:02:54.959556
- Title: Code LLMs: A Taxonomy-based Survey
- Title(参考訳): Code LLMs: 分類学に基づく調査
- Authors: Nishat Raihan, Christian Newman, Marcos Zampieri,
- Abstract要約: 大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示している。
LLMは最近、自然言語(NL)とプログラミング言語(PL)のギャップを埋めて、コーディングタスクへの影響を拡大した。
- 参考スコア(独自算出の注目度): 7.3481279783709805
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities across various NLP tasks and have recently expanded their impact to coding tasks, bridging the gap between natural languages (NL) and programming languages (PL). This taxonomy-based survey provides a comprehensive analysis of LLMs in the NL-PL domain, investigating how these models are utilized in coding tasks and examining their methodologies, architectures, and training processes. We propose a taxonomy-based framework that categorizes relevant concepts, providing a unified classification system to facilitate a deeper understanding of this rapidly evolving field. This survey offers insights into the current state and future directions of LLMs in coding tasks, including their applications and limitations.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なNLPタスクにまたがる顕著な機能を示し、最近、自然言語(NL)とプログラミング言語(PL)のギャップを埋める、コーディングタスクへの影響を拡大した。
この分類に基づく調査は、NL-PLドメインにおけるLCMの包括的な分析を提供し、これらのモデルがどのようにコーディングタスクに利用され、それらの方法論、アーキテクチャ、およびトレーニングプロセスを調べるかを調査している。
本稿では,この急速に発展する分野のより深い理解を促進するために,関連する概念を分類し,統一的な分類システムを提供する分類学に基づく枠組みを提案する。
この調査は、LLMのコーディングタスクにおける現在の状況と今後の方向性に関する洞察を提供する。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
タスクの多種多様な配列で訓練済みの大規模言語モデル(LLM)を微調整することが、モデル構築の一般的なアプローチとなっている。
本研究では,事前学習したLLMに符号化されたタスク固有情報と,その表現に対する指導指導の効果について検討する。
論文 参考訳(メタデータ) (2024-10-25T23:38:28Z) - Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions [2.5179515260542544]
大規模言語モデル (LLM) は、テキスト生成、質問応答、テキスト要約における汎用的な応用のために、学界や業界全体で大きな注目を集めている。
パフォーマンスを定量化するためには、既存のメトリクスを包括的に把握することが重要です。
本稿では,メトリクスの観点からLLM評価を包括的に調査し,現在使用されているメトリクスの選択と解釈について考察する。
論文 参考訳(メタデータ) (2024-04-14T03:54:00Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Several categories of Large Language Models (LLMs): A Short Survey [3.73538163699716]
大規模言語モデル(LLM)は、自然言語処理の効果的なツールとなり、様々な分野で使われてきた。
この調査は、タスクベースの金融LLM、多言語LLM、バイオメディカルおよび臨床LLM、ビジョン言語LLM、コード言語モデルなど、近年のLLMの発展と取り組みを強調している。
論文 参考訳(メタデータ) (2023-07-05T18:18:23Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
このガイドは、研究者や実践者が大規模言語モデルを扱うための貴重な洞察とベストプラクティスを提供することを目的としている。
実世界のシナリオにおける LLM の実用的応用と限界を説明するために, 様々なユースケースと非利用事例を提示する。
論文 参考訳(メタデータ) (2023-04-26T17:52:30Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
論文 参考訳(メタデータ) (2022-02-16T13:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。