論文の概要: GDSG: Graph Diffusion-based Solution Generation for Optimization Problems in MEC Networks
- arxiv url: http://arxiv.org/abs/2412.08296v1
- Date: Wed, 11 Dec 2024 11:13:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:58.651181
- Title: GDSG: Graph Diffusion-based Solution Generation for Optimization Problems in MEC Networks
- Title(参考訳): GDSG:MECネットワークにおける最適化問題のためのグラフ拡散型ソリューション生成
- Authors: Ruihuai Liang, Bo Yang, Pengyu Chen, Zhiwen Yu, Xuelin Cao, Mérouane Debbah, H. Vincent Poor, Chau Yuen,
- Abstract要約: グラフ拡散型ソリューション生成(GDSG)法を提案する。
このアプローチは、おそらく最適な解に収束しながら、最適以下のデータセットを扱うように設計されている。
グラフニューラルネットワーク(GNN)を用いたマルチタスク拡散モデルとしてGDSGを構築し,高品質な解の分布を求める。
- 参考スコア(独自算出の注目度): 77.14747896397546
- License:
- Abstract: Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at http://ieee-dataport.org/13824, as well as the GDSG algorithm codes at https://github.com/qiyu3816/GDSG.
- Abstract(参考訳): MECネットワークの最適化は、NPハードで効率的な近似アルゴリズムが欠如しているため、効率的かつ確実に機能することが不可欠である。
これは、従来のディープラーニングアプローチの有効性を制約し、最適解の明快さをもたらす。
既存の学習ベース手法の多くは、広範な最適データを必要とせず、より効率と有効性で得られる準最適データの潜在的な利点を活用できない。
In the multi-server multi-user compute offloading (MSCO) problem, which is widely observed in systems of Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) network, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method。
このアプローチは、おそらく最適な解に収束しながら、最適以下のデータセットを扱うように設計されている。
最適化問題を分散学習に変換し、最適下トレーニングデータセットからの学習を明確に説明する。
グラフニューラルネットワーク(GNN)を用いたマルチタスク拡散モデルとしてGDSGを構築し,高品質な解の分布を求める。
我々は、単純で効率的なヒューリスティックな手法を用いて、最適以下の解からなる十分な量のトレーニングデータを得る。
実装では、バックボーンGNNを強化し、一般化を向上する。
GDSGは100倍近いタスク直交性に達し、離散的タスクと連続的タスクの間に干渉を生じさせない。
さらに、この直交性は、ニューラルネットワークアーキテクチャ自体よりも拡散関連トレーニング損失から生じることを明らかにした。
実験により、GDSGは最適なトレーニングデータセットと準最適トレーニングデータセットの両方において、他のベンチマーク手法を上回ることが示された。
MSCOデータセットはhttp://ieee-dataport.org/13824でオープンソース化され、GDSGアルゴリズムコードもhttps://github.com/qiyu3816/GDSGで公開されている。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data [0.40611352512781856]
本稿では,高次元離散データから疎構造ベイズネットワークを学習する問題に対処する。
本稿では,空間特性とDAG特性を同時に満足するスコア関数を提案する。
具体的には,アルゴリズムを高次元データで効率的に動作させるため,最適化アルゴリズムに分散低減法を用いる。
論文 参考訳(メタデータ) (2021-08-21T12:21:01Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
最先端のディープニューラルネットワーク(DNN)には、計算とデータ管理の大幅な要件がある。
スパシフィケーション法とプルーニング法は,DNNの大量の接続を除去するのに有効であることが示されている。
その結果得られたスパースネットワークは、ディープラーニングにおけるトレーニングと推論の計算効率をさらに向上するためのユニークな課題を提示する。
論文 参考訳(メタデータ) (2021-04-23T20:05:52Z) - Train Like a (Var)Pro: Efficient Training of Neural Networks with
Variable Projection [2.7561479348365734]
ディープニューラルネットワーク(DNN)は、さまざまな従来の機械学習タスクで最先端のパフォーマンスを達成した。
本稿では,多くの最先端アプリケーションで発生するDNNのトレーニングについて考察する。
論文 参考訳(メタデータ) (2020-07-26T16:29:39Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。