論文の概要: Partitioning sparse deep neural networks for scalable training and
inference
- arxiv url: http://arxiv.org/abs/2104.11805v1
- Date: Fri, 23 Apr 2021 20:05:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 14:53:23.164469
- Title: Partitioning sparse deep neural networks for scalable training and
inference
- Title(参考訳): スケーラブルなトレーニングと推論のためのスパースディープニューラルネットワークの分割
- Authors: Gunduz Vehbi Demirci, Hakan Ferhatosmanoglu
- Abstract要約: 最先端のディープニューラルネットワーク(DNN)には、計算とデータ管理の大幅な要件がある。
スパシフィケーション法とプルーニング法は,DNNの大量の接続を除去するのに有効であることが示されている。
その結果得られたスパースネットワークは、ディープラーニングにおけるトレーニングと推論の計算効率をさらに向上するためのユニークな課題を提示する。
- 参考スコア(独自算出の注目度): 8.282177703075453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The state-of-the-art deep neural networks (DNNs) have significant
computational and data management requirements. The size of both training data
and models continue to increase. Sparsification and pruning methods are shown
to be effective in removing a large fraction of connections in DNNs. The
resulting sparse networks present unique challenges to further improve the
computational efficiency of training and inference in deep learning. Both the
feedforward (inference) and backpropagation steps in stochastic gradient
descent (SGD) algorithm for training sparse DNNs involve consecutive sparse
matrix-vector multiplications (SpMVs). We first introduce a distributed-memory
parallel SpMV-based solution for the SGD algorithm to improve its scalability.
The parallelization approach is based on row-wise partitioning of weight
matrices that represent neuron connections between consecutive layers. We then
propose a novel hypergraph model for partitioning weight matrices to reduce the
total communication volume and ensure computational load-balance among
processors. Experiments performed on sparse DNNs demonstrate that the proposed
solution is highly efficient and scalable. By utilizing the proposed matrix
partitioning scheme, the performance of our solution is further improved
significantly.
- Abstract(参考訳): 最先端のディープニューラルネットワーク(DNN)には、計算とデータ管理の大幅な要件がある。
トレーニングデータとモデルのサイズは増え続けている。
スパシフィケーション法とプルーニング法は,DNNの大量の接続を除去するのに有効であることが示されている。
その結果得られたスパースネットワークは、ディープラーニングにおけるトレーニングと推論の計算効率をさらに向上するためのユニークな課題を提示する。
スパースdnnを訓練するための確率的勾配降下(sgd)アルゴリズムにおけるfeedforward (inference) と backpropagation steps は、sparse matrix-vector multiplication (spmvs) を含む。
まず,SGDアルゴリズムのスケーラビリティ向上のために,分散メモリ並列SpMVベースのソリューションを提案する。
並列化アプローチは、連続層間のニューロン接続を表す重み行列の行分割に基づいている。
そこで,重み行列を分割して通信量を削減し,プロセッサ間の計算負荷バランスを確保するためのハイパーグラフモデルを提案する。
スパースDNNで行った実験では,提案手法が高効率でスケーラブルであることが示されている。
提案手法を用いることにより,提案手法の性能がさらに向上した。
関連論文リスト
- Event-based backpropagation on the neuromorphic platform SpiNNaker2 [1.0597501054401728]
EventPropはスパイクニューラルネットワーク(SNN)におけるイベントベースのバックプロパゲーションのためのアルゴリズム
本実装では, 微分方程式とその共役の離散バージョンを用いて, 漏洩した積分・発火ニューロンの多層ネットワークを計算した。
我々は,Yin Yangデータセットを用いたSNNのバッチ並列化オンチップトレーニングの概念実証を行った。
論文 参考訳(メタデータ) (2024-12-19T16:31:42Z) - GDSG: Graph Diffusion-based Solution Generator for Optimization Problems in MEC Networks [109.17835015018532]
グラフ拡散型ソリューション生成(GDSG)法を提案する。
このアプローチは、おそらく最適な解に収束しながら、最適以下のデータセットを扱うように設計されている。
グラフニューラルネットワーク(GNN)を用いたマルチタスク拡散モデルとしてGDSGを構築し,高品質な解の分布を求める。
論文 参考訳(メタデータ) (2024-12-11T11:13:43Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
分散コンピューティングは、DNNベースのAIワークロードを実装するための最近のパラダイムとして登場した。
本稿では,レート・精度・複雑さのトレードオフを最適化する上での課題に対処するアプローチを提案する。
我々のアプローチは、トレーニングと推論の両方において非常に軽量であり、非常に効果的であり、高い速度歪曲性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T15:02:11Z) - Efficient and Robust Mixed-Integer Optimization Methods for Training
Binarized Deep Neural Networks [0.07614628596146598]
二元活性化関数と連続または整数重み付きディープニューラルネットワーク(BDNN)について検討する。
BDNNは、古典的な混合整数計画解法により、大域的最適性に解けるような、有界な重み付き混合整数線形プログラムとして再構成可能であることを示す。
トレーニング中にBDNNの堅牢性を強制するロバストモデルが初めて提示される。
論文 参考訳(メタデータ) (2021-10-21T18:02:58Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。