HyViLM: Enhancing Fine-Grained Recognition with a Hybrid Encoder for Vision-Language Models
- URL: http://arxiv.org/abs/2412.08378v2
- Date: Fri, 13 Dec 2024 09:49:53 GMT
- Title: HyViLM: Enhancing Fine-Grained Recognition with a Hybrid Encoder for Vision-Language Models
- Authors: Shiding Zhu, Wenhui Dong, Jun Song, Yingbo Wang, Yanan Guo, Bo Zheng,
- Abstract summary: HyViLM is designed to process images of any resolution while retaining the overall context during encoding.
Compared with the state-of-the-art MLLMs under the same setting, our HyViLM outperforms existing MLLMs in nine out of ten tasks.
- Score: 15.128058747088222
- License:
- Abstract: Recently, there has been growing interest in the capability of multimodal large language models (MLLMs) to process high-resolution images. A common approach currently involves dynamically cropping the original high-resolution image into smaller sub-images, which are then fed into a vision encoder that was pre-trained on lower-resolution images. However, this cropping approach often truncates objects and connected areas in the original image, causing semantic breaks. To address this limitation, we introduce HyViLM, designed to process images of any resolution while retaining the overall context during encoding. Specifically, we: (i) Design a new visual encoder called Hybrid Encoder that not only encodes individual sub-images but also interacts with detailed global visual features, significantly improving the model's ability to encode high-resolution images. (ii) Propose an optimal feature fusion strategy for the dynamic cropping approach, effectively leveraging information from different layers of the vision encoder. Compared with the state-of-the-art MLLMs under the same setting, our HyViLM outperforms existing MLLMs in nine out of ten tasks. Specifically, HyViLM achieves a 9.6% improvement in performance on the TextVQA task and a 6.9% enhancement on the DocVQA task.
Related papers
- Elevating Flow-Guided Video Inpainting with Reference Generation [50.03502211226332]
Video inpainting (VI) is a challenging task that requires effective propagation of observable content across frames while simultaneously generating new content not present in the original video.
We propose a robust and practical VI framework that leverages a large generative model for reference generation in combination with an advanced pixel propagation algorithm.
Our method not only significantly enhances frame-level quality for object removal but also synthesizes new content in the missing areas based on user-provided text prompts.
arXiv Detail & Related papers (2024-12-12T06:13:00Z) - Multimodal Autoregressive Pre-training of Large Vision Encoders [85.39154488397931]
We present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process.
Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification.
arXiv Detail & Related papers (2024-11-21T18:31:25Z) - Multimodal Instruction Tuning with Hybrid State Space Models [25.921044010033267]
Long context is crucial for enhancing the recognition and understanding capabilities of multimodal large language models.
We propose a novel approach using a hybrid transformer-MAMBA model to efficiently handle long contexts in multimodal applications.
Our model enhances inference efficiency for high-resolution images and high-frame-rate videos by about 4 times compared to current models.
arXiv Detail & Related papers (2024-11-13T18:19:51Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - MixNet: Efficient Global Modeling for Ultra-High-Definition Image Restoration [36.15948393000783]
We propose a novel image restoration method called MixNet, which introduces an alternative approach to global modeling approaches.
To capture the longrange dependency of features without introducing excessive computational complexity, we present the Global Feature Modulation Layer (GFML)
We conduct extensive experiments on four UHD image restoration tasks, including low-light image enhancement, underwater image enhancement, image deblurring and image demoireing, and the comprehensive results demonstrate that our proposed method surpasses the performance of current state-of-the-art methods.
arXiv Detail & Related papers (2024-01-19T12:40:54Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.