論文の概要: Image-Based Malware Classification Using QR and Aztec Codes
- arxiv url: http://arxiv.org/abs/2412.08514v1
- Date: Wed, 11 Dec 2024 16:25:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:03.362183
- Title: Image-Based Malware Classification Using QR and Aztec Codes
- Title(参考訳): QRおよびアステカ符号を用いた画像ベースマルウェア分類
- Authors: Atharva Khadilkar, Mark Stamp,
- Abstract要約: 実行可能ファイルから抽出された特徴をQRおよびAztecコードに変換する革新的な方法を検討する。
これらのコードは、CNNの学習能力を高める可能性のあるフォーマットで構造パターンをキャプチャする。
この結果から,QRおよびAztec符号を機能工学の一形態として用いることは,マルウェア領域において有望であることが示唆された。
- 参考スコア(独自算出の注目度): 1.3812010983144798
- License:
- Abstract: In recent years, the use of image-based techniques for malware detection has gained prominence, with numerous studies demonstrating the efficacy of deep learning approaches such as Convolutional Neural Networks (CNN) in classifying images derived from executable files. In this paper, we consider an innovative method that relies on an image conversion process that consists of transforming features extracted from executable files into QR and Aztec codes. These codes capture structural patterns in a format that may enhance the learning capabilities of CNNs. We design and implement CNN architectures tailored to the unique properties of these codes and apply them to a comprehensive analysis involving two extensive malware datasets, both of which include a significant corpus of benign samples. Our results yield a split decision, with CNNs trained on QR and Aztec codes outperforming the state of the art on one of the datasets, but underperforming more typical techniques on the other dataset. These results indicate that the use of QR and Aztec codes as a form of feature engineering holds considerable promise in the malware domain, and that additional research is needed to better understand the relative strengths and weaknesses of such an approach.
- Abstract(参考訳): 近年,画像に基づくマルウェア検出技術が注目され,CNN(Convolutional Neural Networks)などの深層学習アプローチが実行ファイルから派生した画像の分類に有効であることを示す研究が数多く行われている。
本稿では,実行可能ファイルから抽出された特徴をQRおよびAztecコードに変換することにより,画像変換処理に依存する革新的な手法を提案する。
これらのコードは、CNNの学習能力を高める可能性のあるフォーマットで構造パターンをキャプチャする。
我々は、これらのコードのユニークな性質に合わせたCNNアーキテクチャを設計、実装し、2つの大規模なマルウェアデータセットを含む包括的な分析に適用する。
結果、QRとAztecのコードでトレーニングされたCNNは、データセットの1つで最先端よりも優れていますが、他のデータセットではより一般的なテクニックよりも優れています。
これらの結果から,QRおよびAztec符号を機能工学の一形態として用いることは,マルウェア領域においてかなりの可能性を秘めており,そのようなアプローチの相対的な強みや弱点をよりよく理解するためには,さらなる研究が必要であることが示唆された。
関連論文リスト
- Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - Harnessing Machine Learning for Discerning AI-Generated Synthetic Images [2.6227376966885476]
我々は、AI生成画像と実画像の識別に機械学習技術を用いる。
ResNet、VGGNet、DenseNetといった先進的なディープラーニングアーキテクチャを洗練し、適応しています。
実験結果は重要であり、最適化されたディープラーニングモデルが従来の手法より優れていることを示した。
論文 参考訳(メタデータ) (2024-01-14T20:00:37Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
本稿では,新しいコントラスト学習 (Contrastive Learning, SCL) と NR-IQA モデル SaTQA を提案する。
まず、SCLによる大規模合成データセット上にモデルをトレーニングし、様々な歪みタイプとレベルの画像の劣化特徴を抽出する。
画像から歪み情報を抽出するために,CNNインダクティブバイアスとTransformerの長期依存性モデリング機能を組み合わせることで,マルチストリームブロック(MSB)を組み込んだバックボーンネットワークを提案する。
7つの標準IQAデータセットの実験結果から、SaTQAは合成データセットと認証データセットの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-12T06:01:41Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Empirical Analysis of Image Caption Generation using Deep Learning [0.0]
我々は,マルチモーダル画像キャプションネットワークの様々なフレーバーを実装し,実験した。
目標は、さまざまな評価指標を使用して、各アプローチのパフォーマンスを分析することである。
論文 参考訳(メタデータ) (2021-05-14T05:38:13Z) - An Empirical Analysis of Image-Based Learning Techniques for Malware
Classification [4.111899441919165]
本稿では,ディープラーニング技術と画像に基づく特徴を用いたマルウェア分類について検討する。
私たちは、多層パーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、長期短期メモリ(LSTM)、ゲートリカレントユニット(GRU)など、幅広いディープラーニング技術を採用しています。
論文 参考訳(メタデータ) (2021-03-24T16:10:05Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Frequency learning for image classification [1.9336815376402716]
本稿では、トレーニング可能な周波数フィルタからなる入力画像のフーリエ変換を探索する新しい手法を提案する。
画像ブロックの周波数領域表現からグローバル特徴とローカル特徴の両方を学習するスライシング手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T00:32:47Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。