GeoConformal prediction: a model-agnostic framework of measuring the uncertainty of spatial prediction
- URL: http://arxiv.org/abs/2412.08661v2
- Date: Fri, 13 Dec 2024 22:47:01 GMT
- Title: GeoConformal prediction: a model-agnostic framework of measuring the uncertainty of spatial prediction
- Authors: Xiayin Lou, Peng Luo, Liqiu Meng,
- Abstract summary: We propose a model-agnostic uncertainty assessment method called GeoConformal Prediction.
We apply it to two classic spatial prediction cases, spatial regression and spatial prediction.
We find that GeoConformal holds potential not only for geographic knowledge discovery but also for guiding the design of future GeoAI models.
- Score: 1.8127783865655926
- License:
- Abstract: Spatial prediction is a fundamental task in geography. In recent years, with advances in geospatial artificial intelligence (GeoAI), numerous models have been developed to improve the accuracy of geographic variable predictions. Beyond achieving higher accuracy, it is equally important to obtain predictions with uncertainty measures to enhance model credibility and support responsible spatial prediction. Although geostatistic methods like Kriging offer some level of uncertainty assessment, such as Kriging variance, these measurements are not always accurate and lack general applicability to other spatial models. To address this issue, we propose a model-agnostic uncertainty assessment method called GeoConformal Prediction, which incorporates geographical weighting into conformal prediction. We applied it to two classic spatial prediction cases, spatial regression and spatial interpolation, to evaluate its reliability. First, in the spatial regression case, we used XGBoost to predict housing prices, followed by GeoConformal to calculate uncertainty. Our results show that GeoConformal achieved a coverage rate of 93.67%, while Bootstrap methods only reached a maximum coverage of 81.00% after 2000 runs. Next, we applied GeoConformal to spatial interpolation models. We found that the uncertainty obtained from GeoConformal aligned closely with the variance in Kriging. Finally, using GeoConformal, we analyzed the sources of uncertainty in spatial prediction. We found that explicitly including local features in AI models can significantly reduce prediction uncertainty, especially in areas with strong local dependence. Our findings suggest that GeoConformal holds potential not only for geographic knowledge discovery but also for guiding the design of future GeoAI models, paving the way for more reliable and interpretable spatial prediction frameworks.
Related papers
- Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.
GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.
We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks [8.132751508556078]
We propose to model spatial process heterogeneity at the regional level rather than at the individual level.
Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election.
arXiv Detail & Related papers (2025-01-29T12:09:01Z) - GeoPro-Net: Learning Interpretable Spatiotemporal Prediction Models through Statistically-Guided Geo-Prototyping [36.33309805132091]
We propose GeoPro-Net to bridge the gap between deep learning and multi-sourcetemporal forecasting.
GeoPro-Net learns different sets of concepts inherently, and interprets them to real-world cases.
arXiv Detail & Related papers (2024-12-19T19:39:16Z) - Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors [4.415977307120618]
We examine the challenge of estimating the location of a single ground-level image in the absence of GPS or other location metadata.
We introduce a novel metric, Recall vs Area, which measures the accuracy of estimated distributions of locations.
We then examine an ensembling approach to global-scale image geolocation, which incorporates information from multiple sources.
arXiv Detail & Related papers (2024-07-18T19:15:52Z) - Towards physics-informed neural networks for landslide prediction [1.03590082373586]
PINN is a neural network tasked with explicitly retrieving geotechnical parameters from common proxy variables.
Our model produces excellent predictive performance in the form of standard susceptibility output.
This architecture is framed to tackle coseismic landslide prediction, something that, if confirmed in other studies, could open up towards PINN-based near-real-time predictions.
arXiv Detail & Related papers (2024-07-09T11:54:49Z) - RbX: Region-based explanations of prediction models [69.3939291118954]
Region-based explanations (RbX) is a model-agnostic method to generate local explanations of scalar outputs from a black-box prediction model.
RbX is guaranteed to satisfy a "sparsity axiom," which requires that features which do not enter into the prediction model are assigned zero importance.
arXiv Detail & Related papers (2022-10-17T03:38:06Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Leveraging Selective Prediction for Reliable Image Geolocation [6.453278464902654]
We define the task of image localizability, i.e. suitability of an image for geolocation.
We propose a selective prediction methodology to address the task.
By abstaining from predicting non-localizable images, we improve geolocation accuracy from 27.8% to 70.5% at the city-scale.
arXiv Detail & Related papers (2021-11-23T15:46:12Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Confidence Adaptive Anytime Pixel-Level Recognition [86.75784498879354]
Anytime inference requires a model to make a progression of predictions which might be halted at any time.
We propose the first unified and end-to-end model approach for anytime pixel-level recognition.
arXiv Detail & Related papers (2021-04-01T20:01:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.