Generative AI in Modern Education Society
- URL: http://arxiv.org/abs/2412.08666v1
- Date: Tue, 10 Dec 2024 09:11:06 GMT
- Title: Generative AI in Modern Education Society
- Authors: Sanjay Chakraborty,
- Abstract summary: Transitioning from Education 1.0 to Education 5.0, the integration of generative artificial intelligence (GenAI) revolutionizes the learning environment.<n>Our understanding of academic integrity and the scholarship of teaching, learning, and research has been revolutionised by GenAI.
- Score: 0.6798775532273751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transitioning from Education 1.0 to Education 5.0, the integration of generative artificial intelligence (GenAI) revolutionizes the learning environment by fostering enhanced human-machine collaboration, enabling personalized, adaptive and experiential learning, and preparing students with the skills and adaptability needed for the future workforce. Our understanding of academic integrity and the scholarship of teaching, learning, and research has been revolutionised by GenAI. Schools and universities around the world are experimenting and exploring the integration of GenAI in their education systems (like, curriculum design, teaching process and assessments, administrative tasks, results generation and so on). The findings of the literature study demonstrate how well GenAI has been incorporated into the global educational system. This study explains the roles of GenAI in the schooling and university education systems with respect to the different stakeholders (students, teachers, researchers etc,). It highlights the current challenges of integrating Generative AI into the education system and outlines future directions for leveraging GenAI to enhance educational practices.
Related papers
- Generative AI in Education: Student Skills and Lecturer Roles [0.0]
This study aims to identify and evaluate the key competencies students need to effectively engage with GenAI in education.
The literature review identified 14 essential student skills for GenAI engagement, with AI literacy, critical thinking, and ethical AI practices emerging as the most critical.
In our study of lecturer strategies, we identified six key areas, with GenAI Integration and Curriculum Design being the most emphasised.
arXiv Detail & Related papers (2025-04-28T10:58:30Z) - Synergizing Self-Regulation and Artificial-Intelligence Literacy Towards Future Human-AI Integrative Learning [92.34299949916134]
Self-regulated learning (SRL) and Artificial-Intelligence (AI) literacy are becoming key competencies for successful human-AI interactive learning.
This study analyzed data from 1,704 Chinese undergraduates using clustering methods to uncover four learner groups.
arXiv Detail & Related papers (2025-03-31T13:41:21Z) - Engineering Educators' Perspectives on the Impact of Generative AI in Higher Education [4.06279597585806]
This study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI.
We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it.
arXiv Detail & Related papers (2025-02-01T21:29:53Z) - Transforming Teachers' Roles and Agencies in the Era of Generative AI: Perceptions, Acceptance, Knowledge, and Practices [0.7416846035207727]
This paper explores the transformative impact of Generative Artificial Intelligence (GenAI) on teachers' roles and agencies in education.
It presents a comprehensive framework that addresses teachers' perceptions, knowledge, acceptance, and practices of GenAI.
arXiv Detail & Related papers (2024-10-03T21:59:01Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - Generativism: the new hybrid [0.0]
It is clear that the future of education, as all industries, is collaboration with GenAI.
This article presents an approach to designing education in collaboration with GenAI, based on digital education frameworks adapted for this new hybrid of the AI age.
arXiv Detail & Related papers (2023-09-21T20:23:58Z) - The AI generation gap: Are Gen Z students more interested in adopting
generative AI such as ChatGPT in teaching and learning than their Gen X and
Millennial Generation teachers? [0.0]
Gen Z students were generally optimistic about the potential benefits of generative AI (GenAI)
Gen X and Gen Y teachers expressed heightened concerns about overreliance, ethical and pedagogical implications.
arXiv Detail & Related papers (2023-05-04T14:42:06Z) - Students' Voices on Generative AI: Perceptions, Benefits, and Challenges
in Higher Education [2.0711789781518752]
This study explores university students' perceptions of generative AI (GenAI) technologies, such as ChatGPT, in higher education.
Students recognized the potential for personalized learning support, writing and brainstorming assistance, and research and analysis capabilities.
Concerns about accuracy, privacy, ethical issues, and the impact on personal development, career prospects, and societal values were also expressed.
arXiv Detail & Related papers (2023-04-29T15:53:38Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
We present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE)
Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes.
arXiv Detail & Related papers (2022-02-02T20:59:53Z) - Creation and Evaluation of a Pre-tertiary Artificial Intelligence (AI)
Curriculum [58.86139968005518]
The Chinese University of Hong Kong (CUHK)-Jockey Club AI for the Future Project (AI4Future) co-created an AI curriculum for pre-tertiary education.
A team of 14 professors with expertise in engineering and education collaborated with 17 principals and teachers from 6 secondary schools to co-create the curriculum.
The co-creation process generated a variety of resources which enhanced the teachers knowledge in AI, as well as fostered teachers autonomy in bringing the subject matter into their classrooms.
arXiv Detail & Related papers (2021-01-19T11:26:19Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.