Fundamental bounds on many-body spin cluster intensities
- URL: http://arxiv.org/abs/2412.08796v1
- Date: Wed, 11 Dec 2024 22:02:46 GMT
- Title: Fundamental bounds on many-body spin cluster intensities
- Authors: Christian Bengs, Chongwei Zhang, Ashok Ajoy,
- Abstract summary: Multiple-quantum coherence (MQC) spectroscopy is a powerful technique for probing spin clusters.<n>Prior experiments have revealed a rapid decay in MQC intensities as the coherence order increases.<n>We establish fundamental bounds on observable MQC intensities in the thermodynamic limit outside the weak polarisation limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple-quantum coherence (MQC) spectroscopy is a powerful technique for probing spin clusters, offering insights into diverse materials and quantum many-body systems. However, prior experiments have revealed a rapid decay in MQC intensities as the coherence order increases, restricting observable cluster sizes to the square root of the total system size. In this work, we establish fundamental bounds on observable MQC intensities in the thermodynamic limit outside the weak polarisation limit. We identify a sharp transition point in the observable MQC intensities as the coherence order grows. This transition points fragments the state space into two components consisting of observable and unobservable spin clusters. Notably, we find that this transition point is directly proportional to the size $N$ and polarization $p$ of the system, suggesting that the aforementioned square root limitation can be overcome through hyperpolarization techniques. Our results provide important experimental guidelines for the observation of large spin cluster phenomena.
Related papers
- Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - Entanglement Microscopy: Tomography and Entanglement Measures via Quantum Monte Carlo [0.3495246564946556]
We employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of microscopic subregion.
We show that the Ising QCP exhibits short-range entanglement with a finite sudden death of the LN both in space and temperature.
We find no detectable 3-party entanglement with our two witnesses in a large parameter window near the Ising QCP in 2d, in contrast to 1d.
arXiv Detail & Related papers (2024-02-22T19:00:03Z) - Matrix-product-state-based band-Lanczos solver for quantum cluster
approaches [0.0]
We present a matrix-product state (MPS) based band-Lanczos method as solver for quantum cluster methods.
We show that our approach makes it possible to treat cluster geometries well beyond the reach of exact diagonalization methods.
arXiv Detail & Related papers (2023-10-16T19:59:21Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Long-range multipartite quantum correlations and factorization in a
one-dimensional spin-1/2 $XY$ chain [0.1474723404975345]
We study the properties of multipartite quantum correlation (MQC) in a one-dimensional spin-1/2 $XY$ chain.
In the Ising case, the three-spin subsystems have the long-range MQCs and the tripartite quantum correlations beyond the nearest-neighbor three spins can detect the quantum phase transition.
In the $XY$ model, we show that the two selected MQCs can indicate exactly the factorization point of the ground state for the anisotropic model.
arXiv Detail & Related papers (2022-07-28T18:22:13Z) - Directly Revealing Entanglement Dynamics through Quantum Correlation
Transfer Functions with Resultant Demonstration of the Mechanism of Many-Body
Localization [0.0]
This paper introduces the Quantum Correlation Transfer Function (QCTF) approach to entanglement dynamics in many-body quantum systems.
We show that QCTF can be fully characterized directly from the system's Hamiltonian, which circumvents the bottleneck of calculating the many-body system's time-evolution.
We also show that QCTF provides a new foundation to study the Eigenstate Thermalization Hypothesis (ETH)
arXiv Detail & Related papers (2022-01-26T22:50:04Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Extreme depolarization for any spin [0.0]
We study the depolarization, both isotropic and anisotropic, of a quantum spin of arbitrary spin quantum number $j$.
We establish a precise link between superdecoherence and entanglement.
arXiv Detail & Related papers (2021-06-22T11:31:54Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.