論文の概要: Exploring Large Language Models on Cross-Cultural Values in Connection with Training Methodology
- arxiv url: http://arxiv.org/abs/2412.08846v1
- Date: Thu, 12 Dec 2024 00:52:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 15:57:56.097294
- Title: Exploring Large Language Models on Cross-Cultural Values in Connection with Training Methodology
- Title(参考訳): 学習手法との関連性を考慮したクロスカルチャー的価値に関する大規模言語モデルの検討
- Authors: Minsang Kim, Seungjun Baek,
- Abstract要約: 大規模言語モデル(LLM)は人間と密接に相互作用し、人間の社会の文化的価値を深く理解する必要がある。
分析の結果,LLMは人間に類似した社会文化的規範を判断できるが,社会システムや進歩には影響しないことが明らかとなった。
モデルサイズの増加は、社会的価値をよりよく理解するのに役立つが、より小さなモデルは、合成データを使用することで強化することができる。
- 参考スコア(独自算出の注目度): 4.079147243688765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) closely interact with humans, and thus need an intimate understanding of the cultural values of human society. In this paper, we explore how open-source LLMs make judgments on diverse categories of cultural values across countries, and its relation to training methodology such as model sizes, training corpus, alignment, etc. Our analysis shows that LLMs can judge socio-cultural norms similar to humans but less so on social systems and progress. In addition, LLMs tend to judge cultural values biased toward Western culture, which can be improved with training on the multilingual corpus. We also find that increasing model size helps a better understanding of social values, but smaller models can be enhanced by using synthetic data. Our analysis reveals valuable insights into the design methodology of LLMs in connection with their understanding of cultural values.
- Abstract(参考訳): 大規模言語モデル(LLM)は人間と密接に相互作用するため、人間社会の文化的価値を深く理解する必要がある。
本稿では,オープンソース LLM が各国の文化的価値の多様性を判断する方法について検討するとともに,モデルサイズやトレーニングコーパス,アライメントなどのトレーニング方法論との関係について考察する。
分析の結果,LLMは人間に類似した社会文化的規範を判断できるが,社会システムや進歩には影響しないことが明らかとなった。
加えて、LLMは西洋文化に偏った文化的価値を判断する傾向があり、多言語コーパスのトレーニングによって改善することができる。
また, モデルサイズの増加は, 社会的価値をよりよく理解する上で有効であるが, 合成データを用いることで, より小さなモデルを改善することができる。
分析の結果,LLMの設計方法論と文化的価値の理解との関連性について,貴重な知見が得られた。
関連論文リスト
- An Evaluation of Cultural Value Alignment in LLM [27.437888319382893]
20カ国の文化と言語を10のLLMで評価し,LLM文化の大規模評価を行った。
以上の結果から,全てのモデルにまたがるアウトプットは中程度の文化的中核となることが示唆された。
より深い調査は、モデルの起源、プロンプト言語、および価値次元が文化的なアウトプットに与える影響に光を当てている。
論文 参考訳(メタデータ) (2025-04-11T09:13:19Z) - CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
大規模言語モデル(LLM)は、より深く様々な地域における人間の生活に統合される。
既存のアプローチは、文化固有のコーパスを微調整することで、文化的に整合したLCMを開発する。
本稿では,新しい文化データ構築フレームワークであるCAReDiOを紹介する。
論文 参考訳(メタデータ) (2025-04-09T13:40:13Z) - Cultural Learning-Based Culture Adaptation of Language Models [70.1063219524999]
大きな言語モデル(LLM)をさまざまな文化的価値に適用することは難しい課題です。
文化的学習に基づくLLMと文化的価値との整合性を高めるための新しい枠組みであるCLCAについて述べる。
論文 参考訳(メタデータ) (2025-04-03T18:16:26Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
論文 参考訳(メタデータ) (2025-01-02T14:42:37Z) - Survey of Cultural Awareness in Language Models: Text and Beyond [39.77033652289063]
大規模言語モデル(LLM)を様々なアプリケーションに大規模に展開するには、LCMはインクリビティを確保するために、ユーザに文化的に敏感である必要がある。
文化は心理学や人類学で広く研究され、近年、LLMをより文化的に包括的にする研究が急増している。
論文 参考訳(メタデータ) (2024-10-30T16:37:50Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
本稿では,大規模言語モデルと多言語文化との整合性を実現するフレームワークであるCultureSPAを提案する。
カルチャー・アウェア/アウェアアウトプットを比較することで、カルチャー関連インスタンスを検出し、収集することができる。
広範囲な実験により、CultureSPAは、一般の能力を損なうことなく、多様な文化へのLCMのアライメントを著しく改善することが示された。
論文 参考訳(メタデータ) (2024-10-16T19:06:08Z) - Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
In-context Learning(ICL)とヒューマンサーベイデータを組み合わせた簡易で安価な手法を提案する。
本手法は、英語以外のテスト言語で有用であることが証明され、文化的に多種多様な国に対応する文化的価値との整合性を向上させることができる。
論文 参考訳(メタデータ) (2024-08-29T12:18:04Z) - How Well Do LLMs Represent Values Across Cultures? Empirical Analysis of LLM Responses Based on Hofstede Cultural Dimensions [9.275967682881944]
ユーザの既知の国のステレオタイプ値に基づいて,大規模言語モデルがユーザに対して異なる値を示すかどうかを理解することが重要である。
我々は,5つのホフスティード文化次元に基づく一連のアドバイス要請で,異なるLCMを刺激する。
LLMは、ある価値の一方の側面と他方の側面を区別することができ、また、国が異なる価値を持っていることを理解できます。
論文 参考訳(メタデータ) (2024-06-21T00:58:01Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - NormAd: A Framework for Measuring the Cultural Adaptability of Large Language Models [26.64843536942309]
大規模言語モデルの文化的適応性を評価するための評価フレームワークであるNormAdを紹介する。
また,NormAd-Etiは,文化的規範の異なるレベルにおいて,社会的受容性を評価するモデルの能力を測定した。
我々は、モデルが社会的に受け入れられない状況と受け入れられない状況を認識するのに優れていることを発見した。
論文 参考訳(メタデータ) (2024-04-18T18:48:50Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
我々は、人間とAIのコラボレーションを活用して、挑戦的な評価データセットを構築するインタラクティブなレッドチームシステムであるCulturalTeamingを紹介する。
我々の研究は、CulturalTeamingの様々なAI支援モードが、文化的な質問の作成においてアノテータを支援することを明らかにした。
CULTURALBENCH-V0.1は、ユーザのリピートの試みにより、コンパクトだが高品質な評価データセットである。
論文 参考訳(メタデータ) (2024-04-10T00:25:09Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。