論文の概要: Mojito: Motion Trajectory and Intensity Control for Video Generation
- arxiv url: http://arxiv.org/abs/2412.08948v1
- Date: Thu, 12 Dec 2024 05:26:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:15.312186
- Title: Mojito: Motion Trajectory and Intensity Control for Video Generation
- Title(参考訳): モジト:映像生成のための運動軌跡と強度制御
- Authors: Xuehai He, Shuohang Wang, Jianwei Yang, Xiaoxia Wu, Yiping Wang, Kuan Wang, Zheng Zhan, Olatunji Ruwase, Yelong Shen, Xin Eric Wang,
- Abstract要約: 本稿では、テキストからビデオ生成のための textbfMotion tratextbfjectory と textbfintensitextbfty contrtextbfol を組み合わせた拡散モデルであるMojitoを紹介する。
Mo Mojitoは、動画から生成された光学式フローマップを使って、さまざまなモーションインテンシティーをガイドする、方向運動制御モジュールとモーションインテンシティ・モジュレータを備えている。
- 参考スコア(独自算出の注目度): 79.85687620761186
- License:
- Abstract: Recent advancements in diffusion models have shown great promise in producing high-quality video content. However, efficiently training diffusion models capable of integrating directional guidance and controllable motion intensity remains a challenging and under-explored area. This paper introduces Mojito, a diffusion model that incorporates both \textbf{Mo}tion tra\textbf{j}ectory and \textbf{i}ntensi\textbf{t}y contr\textbf{o}l for text to video generation. Specifically, Mojito features a Directional Motion Control module that leverages cross-attention to efficiently direct the generated object's motion without additional training, alongside a Motion Intensity Modulator that uses optical flow maps generated from videos to guide varying levels of motion intensity. Extensive experiments demonstrate Mojito's effectiveness in achieving precise trajectory and intensity control with high computational efficiency, generating motion patterns that closely match specified directions and intensities, providing realistic dynamics that align well with natural motion in real-world scenarios.
- Abstract(参考訳): 近年の拡散モデルの発展は,高品質な映像コンテンツを制作する上で大きな可能性を秘めている。
しかし、方向誘導と制御可能な運動強度を統合できる拡散モデルを効率的に訓練することは、困難な領域であり、探索されていない領域である。
本稿では,テキストからビデオ生成のための拡散モデルであるMojitoを紹介し,テキストからビデオへの変換にtra\textbf{j}ectory と \textbf{i}ntensi\textbf{t}y contr\textbf{o}l を併用する。
特に、Mojitoは、クロスアテンションを利用して生成した物体の動きを、追加の訓練なしに効率的に誘導する方向移動制御モジュールと、ビデオから生成された光学フローマップを使用して、さまざまな動き強度のレベルをガイドするモーションインテンシティ・モジュレータを備えている。
大規模な実験は、モジトが高精度な軌跡と強度制御を高い計算効率で達成し、特定の方向や強度と密に一致した動きパターンを生成し、現実世界のシナリオにおける自然な動きとうまく一致した現実的なダイナミクスを提供するという効果を実証している。
関連論文リスト
- A Plug-and-Play Physical Motion Restoration Approach for In-the-Wild High-Difficulty Motions [56.709280823844374]
動作コンテキストとビデオマスクを利用して、欠陥のある動作を修復するマスクベースの動作補正モジュール(MCM)を導入する。
また,運動模倣のための事前訓練および適応手法を用いた物理ベースの運動伝達モジュール (PTM) を提案する。
本手法は,高速な移動を含む映像モーションキャプチャ結果を物理的に洗練するためのプラグイン・アンド・プレイモジュールとして設計されている。
論文 参考訳(メタデータ) (2024-12-23T08:26:00Z) - MotionStone: Decoupled Motion Intensity Modulation with Diffusion Transformer for Image-to-Video Generation [55.238542326124545]
静止画像に画像間(I2V)生成を条件付け、動き強度を付加的な制御信号として最近強化した。
これらの動き認識モデルは多様な動きパターンを生成するために魅力的だが、そのようなモデルを野生の大規模ビデオでトレーニングするための信頼性の高い動き推定器は存在しない。
本稿では,映像中の物体とカメラのデカップリング運動強度を計測できる新しい動き推定器の課題に対処する。
論文 参考訳(メタデータ) (2024-12-08T08:12:37Z) - MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models [3.2311303453753033]
動画拡散モデルにおける動き伝達のための新しいフレームワークであるMotionFlowを紹介する。
本手法は,空間的・時間的ダイナミクスを正確に把握し,操作するために,クロスアテンションマップを利用する。
実験の結果,MotionFlowは劇的なシーン変化であっても,忠実度と汎用性の両方で既存モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-12-06T18:59:12Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - MotionMix: Weakly-Supervised Diffusion for Controllable Motion
Generation [19.999239668765885]
MotionMixはノイズと無注釈の両方のモーションシーケンスを利用する弱い教師付き拡散モデルである。
我々のフレームワークは、テキスト・トゥ・モーション、アクション・トゥ・モーション、音楽・トゥ・ダンスのタスクにおける最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2024-01-20T04:58:06Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
微粒な軌跡条件の運動制御が可能な新しい映像生成フレームワークであるTrackDiffusionを提案する。
TrackDiffusionの重要なコンポーネントは、複数のオブジェクトのフレーム間の一貫性を明確に保証するインスタンスエンハンサーである。
TrackDiffusionによって生成されたビデオシーケンスは、視覚知覚モデルのトレーニングデータとして使用できる。
論文 参考訳(メタデータ) (2023-12-01T15:24:38Z) - LaMD: Latent Motion Diffusion for Video Generation [69.4111397077229]
LaMDフレームワークは、モーション分解されたビデオオートエンコーダと拡散に基づくモーションジェネレータで構成される。
その結果、LaMDはダイナミックスから高度に制御可能な動きに至るまで、幅広い動きを持つ高品質なビデオを生成することがわかった。
論文 参考訳(メタデータ) (2023-04-23T10:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。