Predicting Emergency Department Visits for Patients with Type II Diabetes
- URL: http://arxiv.org/abs/2412.08984v1
- Date: Thu, 12 Dec 2024 06:37:32 GMT
- Title: Predicting Emergency Department Visits for Patients with Type II Diabetes
- Authors: Javad M Alizadeh, Jay S Patel, Gabriel Tajeu, Yuzhou Chen, Ilene L Hollin. Mukesh K Patel, Junchao Fei, Huanmei Wu,
- Abstract summary: Over 30 million Americans are affected by Type II diabetes (T2D), a treatable condition with significant health risks.
This study aims to develop and validate predictive models using machine learning (ML) techniques to estimate emergency department (ED) visits among patients with T2D.
- Score: 10.522637839993807
- License:
- Abstract: Over 30 million Americans are affected by Type II diabetes (T2D), a treatable condition with significant health risks. This study aims to develop and validate predictive models using machine learning (ML) techniques to estimate emergency department (ED) visits among patients with T2D. Data for these patients was obtained from the HealthShare Exchange (HSX), focusing on demographic details, diagnoses, and vital signs. Our sample contained 34,151 patients diagnosed with T2D which resulted in 703,065 visits overall between 2017 and 2021. A workflow integrated EMR data with SDoH for ML predictions. A total of 87 out of 2,555 features were selected for model construction. Various machine learning algorithms, including CatBoost, Ensemble Learning, K-nearest Neighbors (KNN), Support Vector Classification (SVC), Random Forest, and Extreme Gradient Boosting (XGBoost), were employed with tenfold cross-validation to predict whether a patient is at risk of an ED visit. The ROC curves for Random Forest, XGBoost, Ensemble Learning, CatBoost, KNN, and SVC, were 0.82, 0.82, 0.82, 0.81, 0.72, 0.68, respectively. Ensemble Learning and Random Forest models demonstrated superior predictive performance in terms of discrimination, calibration, and clinical applicability. These models are reliable tools for predicting risk of ED visits among patients with T2D. They can estimate future ED demand and assist clinicians in identifying critical factors associated with ED utilization, enabling early interventions to reduce such visits. The top five important features were age, the difference between visitation gaps, visitation gaps, R10 or abdominal and pelvic pain, and the Index of Concentration at the Extremes (ICE) for income.
Related papers
- Incorporating Anatomical Awareness for Enhanced Generalizability and Progression Prediction in Deep Learning-Based Radiographic Sacroiliitis Detection [0.8248058061511542]
The aim of this study was to examine whether incorporating anatomical awareness into a deep learning model can improve generalizability and enable prediction of disease progression.
The performance of the models was compared using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.
arXiv Detail & Related papers (2024-05-12T20:02:25Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
This study included subjects (1832 subjects, 3276 knees) from the baseline of the MOST study.
PF joint regions-of-interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays.
Risk factors included age, sex, BMI and WOMAC score, and the radiographic osteoarthritis stage of the tibiofemoral joint (KL score)
arXiv Detail & Related papers (2023-05-10T06:43:33Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
We propose an interpretable graph learning-based model which interprets the clinical relevance of the input features towards the task.
In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning.
Our proposed model shows superior performance with respect to compared methods with an increase in an average accuracy of 3.2% for Tadpole, 1.6% for UKBB Gender, and 2% for the UKBB Age prediction task.
arXiv Detail & Related papers (2021-03-29T13:04:02Z) - Predicting special care during the COVID-19 pandemic: A machine learning
approach [0.0]
We propose an analytical approach based on statistics and machine learning to predict whether patients are going to require special care.
We also predict the number of days the patients will stay under such care.
The analytical approach can be used in other diseases and can help the planning hospital capacity.
arXiv Detail & Related papers (2020-11-06T00:18:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
We developed an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health outcomes.
We modeled the four adverse outcomes utilizing about 600 features representing patients' pre-COVID health records and demographics.
Our results demonstrated that while demographic variables are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model.
arXiv Detail & Related papers (2020-08-10T02:44:52Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Predicting risk of late age-related macular degeneration using deep
learning [12.137730470081843]
Age-related macular degeneration (AMD) will affect approximately 288 million people worldwide by 2040.
Deep learning has shown promise in diagnosing/screening AMD using color fundus photographs.
We demonstrate how deep learning and survival analysis can predict the probability of progression to late AMD using 3,298 participants.
arXiv Detail & Related papers (2020-07-19T01:32:09Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.