論文の概要: Pulling the Carpet Below the Learner's Feet: Genetic Algorithm To Learn Ensemble Machine Learning Model During Concept Drift
- arxiv url: http://arxiv.org/abs/2412.09035v1
- Date: Thu, 12 Dec 2024 07:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:46.561958
- Title: Pulling the Carpet Below the Learner's Feet: Genetic Algorithm To Learn Ensemble Machine Learning Model During Concept Drift
- Title(参考訳): 学習者の顔の下のカーペットを引っ張る:概念ドリフト中の機械学習モデルを学習するための遺伝的アルゴリズム
- Authors: Teddy Lazebnik,
- Abstract要約: 現実的でダイナミックな環境で機械学習(ML)モデルを使用する場合、ユーザーはしばしばコンセプトドリフト(CD)の課題に対処する必要がある。
本稿では,グローバルMLモデルとCD検出器を組み合わせた2段階のアンサンブルMLモデルを提案する。
提案手法は,CDアルゴリズムを用いた1つのMLパイプライン,特に未知のCD特性を持つシナリオにおいて,優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 0.8158530638728501
- License:
- Abstract: Data-driven models, in general, and machine learning (ML) models, in particular, have gained popularity over recent years with an increased usage of such models across the scientific and engineering domains. When using ML models in realistic and dynamic environments, users need to often handle the challenge of concept drift (CD). In this study, we explore the application of genetic algorithms (GAs) to address the challenges posed by CD in such settings. We propose a novel two-level ensemble ML model, which combines a global ML model with a CD detector, operating as an aggregator for a population of ML pipeline models, each one with an adjusted CD detector by itself responsible for re-training its ML model. In addition, we show one can further improve the proposed model by utilizing off-the-shelf automatic ML methods. Through extensive synthetic dataset analysis, we show that the proposed model outperforms a single ML pipeline with a CD algorithm, particularly in scenarios with unknown CD characteristics. Overall, this study highlights the potential of ensemble ML and CD models obtained through a heuristic and adaptive optimization process such as the GA one to handle complex CD events.
- Abstract(参考訳): データ駆動モデル、特に機械学習(ML)モデルは、科学と工学の領域でそのようなモデルの利用が増加し、近年人気を集めている。
現実的でダイナミックな環境でMLモデルを使用する場合、ユーザはしばしばコンセプトドリフト(CD)の課題に対処する必要がある。
本研究では, 遺伝的アルゴリズム(GA)を用いてCDがもたらす課題に対処する。
本稿では,グローバルMLモデルとCD検出器を組み合わせた2段階のアンサンブルMLモデルを提案する。
さらに,市販の自動ML手法を用いて,提案手法をさらに改良できることを示す。
大規模な合成データセット解析により,提案モデルがCDアルゴリズムを用いて1つのMLパイプライン,特に未知のCD特性を持つシナリオにおいて,優れた性能を示すことを示す。
本研究は,複雑なCDイベントを扱うためのGAなどのヒューリスティックかつ適応的な最適化プロセスを通じて得られたアンサンブルMLとCDモデルの可能性を明らかにする。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Using machine learning to correct model error in data assimilation and
forecast applications [0.0]
本稿では,既存の知識ベースモデルの誤りを訂正するために,この手法を提案する。
結果として得られるサロゲートモデルは、元の(知識ベース)モデルとMLモデルとのハイブリッドモデルである。
DAのハイブリッドサロゲートモデルを用いることで、元のモデルよりもはるかに優れた分析が得られる。
論文 参考訳(メタデータ) (2020-10-23T18:30:45Z) - Combining data assimilation and machine learning to infer unresolved
scale parametrisation [0.0]
近年、動的数値モデルにおいて、未解決プロセスのデータ駆動パラメトリクスを考案する機械学習が提案されている。
我々のゴールは、高分解能シミュレーションの使用を超えて、直接データを用いてMLベースのパラメーターを訓練することである。
いずれの場合も、ハイブリッドモデルは、切り落とされたモデルよりも優れたスキルで予測を得られることを示す。
論文 参考訳(メタデータ) (2020-09-09T14:12:11Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
本研究では,物理正規化ガウス過程(PRGP)という新しいモデリングフレームワークを提案する。
この新しいアプローチは、物理モデル、すなわち古典的なトラフィックフローモデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化する。
提案手法の有効性を証明するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-07-14T17:27:23Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。