論文の概要: Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations
- arxiv url: http://arxiv.org/abs/2007.07762v2
- Date: Sat, 19 Mar 2022 01:04:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 14:25:09.737751
- Title: Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations
- Title(参考訳): 物理正規化ガウス過程を用いたマクロトラフィックフローモデリング:一般化定式化
- Authors: Yun Yuan, Zhao Zhang, Xianfeng Terry Yang
- Abstract要約: 本研究では,物理正規化ガウス過程(PRGP)という新しいモデリングフレームワークを提案する。
この新しいアプローチは、物理モデル、すなわち古典的なトラフィックフローモデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化する。
提案手法の有効性を証明するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
- 参考スコア(独自算出の注目度): 5.827236278192557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of classical traffic flow (e.g., second-order
macroscopic) models and data-driven (e.g., Machine Learning - ML) approaches in
traffic state estimation, those approaches either require great efforts for
parameter calibrations or lack theoretical interpretation. To fill this
research gap, this study presents a new modeling framework, named physics
regularized Gaussian process (PRGP). This novel approach can encode physics
models, i.e., classical traffic flow models, into the Gaussian process
architecture and so as to regularize the ML training process. Particularly,
this study aims to discuss how to develop a PRGP model when the original
physics model is with discrete formulations. Then based on the posterior
regularization inference framework, an efficient stochastic optimization
algorithm is developed to maximize the evidence lowerbound of the system
likelihood. To prove the effectiveness of the proposed model, this paper
conducts empirical studies on a real-world dataset that is collected from a
stretch of I-15 freeway, Utah. Results show the new PRGP model can outperform
the previous compatible methods, such as calibrated physics models and pure
machine learning methods, in estimation precision and input robustness.
- Abstract(参考訳): 古典的なトラフィックフローモデル(例えば2次マクロ)とデータ駆動型(例えば機械学習 - ml)のトラフィック状態推定の成功にもかかわらず、これらのアプローチはパラメータキャリブレーションに多大な労力を必要とするか、理論的解釈を欠いているかのどちらかである。
この研究のギャップを埋めるため、本研究は物理正規化ガウス過程(prgp)と呼ばれる新しいモデリングフレームワークを提案する。
この新しいアプローチは物理モデル、すなわち古典的な交通流モデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化することができる。
特に本研究では,従来の物理モデルが離散的な定式化を伴う場合のPRGPモデルの開発方法について論じる。
そして, 後続正則化推論の枠組みに基づいて, 確率的最適化アルゴリズムを開発し, システムの可能性の低いエビデンスを最大化する。
提案モデルの有効性を証明するため,ユタ州i-15高速道路から収集した実世界のデータセットについて実証実験を行った。
その結果、新しいPRGPモデルは、推定精度と入力ロバスト性において、校正された物理モデルや純粋機械学習手法など、従来と互換性のある手法よりも優れていることを示した。
関連論文リスト
- Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
このチュートリアルは、下流の報酬関数を最適化するための微調整拡散モデルのための方法を網羅的に調査する。
PPO,微分可能最適化,報酬重み付きMLE,値重み付きサンプリング,経路整合性学習など,様々なRLアルゴリズムの適用について説明する。
論文 参考訳(メタデータ) (2024-07-18T17:35:32Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
現在の水理モデリング手法は、データ駆動機械学習アルゴリズムと従来の物理モデルを組み合わせたものである。
結果予測におけるMLの精度にもかかわらず、科学的知識の統合は信頼性の高い予測には不可欠である。
本研究では,概念的水文モデルのプロセス理解とMLアルゴリズムの予測効率を融合した物理インフォームド機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T16:26:59Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
本研究では,概念的水文モデルのプロセス理解と最先端MLモデルの予測能力を組み合わせた物理インフォームド機械学習(PIML)モデルを開発する。
提案したモデルを用いて,インドのナルマダ川流域における目標(流れ流)と中間変数(実際の蒸発吸引)の月次時間系列を予測する。
論文 参考訳(メタデータ) (2021-04-22T12:13:42Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。