論文の概要: LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync
- arxiv url: http://arxiv.org/abs/2412.09262v1
- Date: Thu, 12 Dec 2024 13:20:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:32:25.359242
- Title: LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync
- Title(参考訳): LatentSync:リップシンクのためのオーディオ条件付き潜時拡散モデル
- Authors: Chunyu Li, Chao Zhang, Weikai Xu, Jinghui Xie, Weiguo Feng, Bingyue Peng, Weiwei Xing,
- Abstract要約: LatentSyncは、音声条件付き遅延拡散モデルに基づくエンドツーエンドのリップシンクフレームワークである。
我々のフレームワークは、複雑な音声と視覚の相関をモデル化するために、安定拡散の強力な能力を利用することができる。
SyncNet の精度は HDTF テストセットで 91% から 94% に向上した。
- 参考スコア(独自算出の注目度): 13.480681141520638
- License:
- Abstract: We present LatentSync, an end-to-end lip sync framework based on audio conditioned latent diffusion models without any intermediate motion representation, diverging from previous diffusion-based lip sync methods based on pixel space diffusion or two-stage generation. Our framework can leverage the powerful capabilities of Stable Diffusion to directly model complex audio-visual correlations. Additionally, we found that the diffusion-based lip sync methods exhibit inferior temporal consistency due to the inconsistency in the diffusion process across different frames. We propose Temporal REPresentation Alignment (TREPA) to enhance temporal consistency while preserving lip-sync accuracy. TREPA uses temporal representations extracted by large-scale self-supervised video models to align the generated frames with the ground truth frames. Furthermore, we observe the commonly encountered SyncNet convergence issue and conduct comprehensive empirical studies, identifying key factors affecting SyncNet convergence in terms of model architecture, training hyperparameters, and data preprocessing methods. We significantly improve the accuracy of SyncNet from 91% to 94% on the HDTF test set. Since we did not change the overall training framework of SyncNet, our experience can also be applied to other lip sync and audio-driven portrait animation methods that utilize SyncNet. Based on the above innovations, our method outperforms state-of-the-art lip sync methods across various metrics on the HDTF and VoxCeleb2 datasets.
- Abstract(参考訳): 本研究では,中間動作表現のない音声条件付き遅延拡散モデルに基づくエンドツーエンドのリップシンクフレームワークであるLatentSyncについて,画素空間拡散や2段階生成に基づく従来の拡散ベースのリップシンク手法から逸脱した。
我々のフレームワークは、複雑な音声と視覚の相関を直接モデル化するために、安定拡散の強力な能力を利用することができる。
さらに,拡散に基づくリップシンク法では,異なるフレーム間の拡散過程の不整合により時間的整合性が低下することが判明した。
リップシンク精度を保ちながら時間的整合性を高めるため, TREPA(Temporal RePresentation Alignment)を提案する。
TREPAは、大規模な自己監督型ビデオモデルによって抽出された時間的表現を用いて、生成されたフレームを地上の真理フレームと整列させる。
さらに、一般的に遭遇するSyncNet収束問題を観察し、モデルアーキテクチャ、ハイパーパラメータのトレーニング、データ前処理方法においてSyncNet収束に影響を及ぼす重要な要因を特定し、総合的な実証研究を行う。
SyncNet の精度は HDTF テストセットで 91% から 94% に向上した。
SyncNetの全体的なトレーニングフレームワークを変更しなかったので、SyncNetを利用する他のリップシンクやオーディオ駆動のポートレートアニメーションメソッドにも、私たちの経験を適用できます。
以上の手法は,HDTFおよびVoxCeleb2データセット上の様々な指標において,最先端のリップシンク手法よりも優れていた。
関連論文リスト
- SwapTalk: Audio-Driven Talking Face Generation with One-Shot Customization in Latent Space [13.59798532129008]
我々は,同じ潜在空間における顔交換と唇同期の両タスクを実現する,革新的な統一フレームワークSwapTalkを提案する。
生成した顔ビデオの時系列上でのアイデンティティ一貫性をより包括的に評価するための新しいアイデンティティ一貫性指標を提案する。
HDTF実験の結果,ビデオ品質,リップ同期精度,顔スワップの忠実度,アイデンティティの整合性など,既存の手法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-05-09T09:22:09Z) - Synchformer: Efficient Synchronization from Sparse Cues [100.89656994681934]
コントリビューションには、新しい音声-視覚同期モデル、同期モデルからの抽出を分離するトレーニングが含まれる。
このアプローチは、濃密な設定とスパース設定の両方において最先端の性能を実現する。
また,100万スケールの 'in-the-wild' データセットに同期モデルのトレーニングを拡張し,解釈可能性に対するエビデンス属性技術を調査し,同期モデルの新たな機能であるオーディオ-視覚同期性について検討する。
論文 参考訳(メタデータ) (2024-01-29T18:59:55Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Videoは、ビデオアップスケーリングのためのテキストガイド付き遅延拡散フレームワークである。
ローカルでは、一時的なレイヤをU-NetとVAE-Decoderに統合し、短いシーケンス内で一貫性を維持する。
また、テキストプロンプトによってテクスチャ生成と調整可能なノイズレベルをガイドし、復元と生成のバランスを取ることで、柔軟性も向上する。
論文 参考訳(メタデータ) (2023-12-11T18:54:52Z) - ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation [21.335983674309475]
拡散モデルは、世代毎の根底にあるデノナイジングネットワークへのクエリ数が過度に多いため、遅い推論に悩まされる。
本稿では,1つの非自己回帰型ネットワーククエリのみを必要とするフレームワークであるConsistencyTTAを紹介する。
そこで我々は「CFG対応潜時整合モデル」を提案し, 整合性生成を潜時空間に適応させる。
論文 参考訳(メタデータ) (2023-09-19T16:36:33Z) - Audio-driven Talking Face Generation with Stabilized Synchronization Loss [60.01529422759644]
トーキング・フェイスジェネレーションは、正確な唇の同期と高い視覚的品質でリアルなビデオを作成することを目的としている。
まずサイレント・リップ・ジェネレータを導入することでリップリーク問題に対処する。
実験の結果,我々のモデルは視覚的品質と唇の同期の両方において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-18T15:50:04Z) - Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation [41.292644854306594]
DiffGesture (DiffGesture) という,拡散に基づく新しいフレームワークを提案する。
DiffGestureは、より優れたモードカバレッジとより強力なオーディオ相関を備えたコヒーレントなジェスチャーをレンダリングする、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-03-16T07:32:31Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
本研究は, フレームごとのノイズを, 全フレーム間で共有されるベースノイズ, 時間軸に沿って変化する残雑音に分解することで, 拡散過程を分解する。
様々なデータセットの実験により,ビデオフュージョンと呼ばれる我々の手法が,高品質なビデオ生成において,GANベースと拡散ベースの両方の選択肢を上回ることが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:16:39Z) - On the Audio-visual Synchronization for Lip-to-Speech Synthesis [22.407313748927393]
GRID, TCD-TIMIT, Lip2Wav などの一般的な音声視覚データセットは, データの非同期性に問題があることを示す。
このようなデータセットでリップ・トゥ・スペルのトレーニングを行うと、モデル非同期問題(つまり、生成された音声と入力ビデオの同期が切れている)がさらに引き起こされる可能性がある。
論文 参考訳(メタデータ) (2023-03-01T13:35:35Z) - Edge Continual Learning for Dynamic Digital Twins over Wireless Networks [68.65520952712914]
デジタルツイン(DT)は、現実世界とメタバースの間の重要なリンクを構成する。
本稿では,物理的双生児とそれに対応するサイバー双生児の親和性を正確にモデル化する新しいエッジ連続学習フレームワークを提案する。
提案するフレームワークは,破滅的忘れ込みに対して頑健な,高精度かつ同期的なCTモデルを実現する。
論文 参考訳(メタデータ) (2022-04-10T23:25:37Z) - Looking into Your Speech: Learning Cross-modal Affinity for Audio-visual
Speech Separation [73.1652905564163]
本稿では,音声-視覚的ニューラル処理を用いて音声信号と映像を分離する問題に対処する。
従来の手法では、フレームワイドマッチング基準を用いて、音声とビデオの共有情報を抽出する。
音声と視覚ストリーム間の局所的な親和性だけでなく,グローバル通信を学習するクロスモーダル親和性ネットワーク(CaffNet)を提案する。
論文 参考訳(メタデータ) (2021-03-25T15:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。