An Optical Interconnect for Modular Quantum Computers
- URL: http://arxiv.org/abs/2412.09299v2
- Date: Sat, 14 Dec 2024 06:22:23 GMT
- Title: An Optical Interconnect for Modular Quantum Computers
- Authors: Daisuke Sakuma, Amin Taherkhani, Tomoki Tsuno, Toshihiko Sasaki, Hikaru Shimizu, Kentaro Teramoto, Andrew Todd, Yosuke Ueno, Michal HajduĊĦek, Rikizo Ikuta, Rodney Van Meter, Shota Nagayama,
- Abstract summary: scaling up quantum computers requires an optical interconnect.
We propose a multi-group structure where the group switch routes photons emitted by computational end nodes.
We implement a prototype three-node switched interconnect and create two-hop entanglement with fidelities of at least 0.6.
- Score: 0.44624755182670844
- License:
- Abstract: Much like classical supercomputers, scaling up quantum computers requires an optical interconnect. However, signal attenuation leads to irreversible qubit loss, making quantum interconnect design guidelines and metrics different from conventional computing. Inspired by the classical Dragonfly topology, we propose a multi-group structure where the group switch routes photons emitted by computational end nodes to the group's shared pool of Bell state analyzers (which conduct the entanglement swapping that creates end-to-end entanglement) or across a low-diameter path to another group. We present a full-stack analysis of system performance, a combination of distributed and centralized protocols, and a resource scheduler that plans qubit placement and communications for large-scale, fault-tolerant systems. We implement a prototype three-node switched interconnect and create two-hop entanglement with fidelities of at least 0.6. Our design emphasizes reducing network hops and optical components to simplify system stabilization while flexibly adjusting optical path lengths. Based on evaluated loss and infidelity budgets, we find that moderate-radix switches enable systems meeting expected near-term needs, and large systems are feasible. Our design is expected to be effective for a variety of quantum computing technologies, including ion traps and superconducting qubits with appropriate wavelength transduction.
Related papers
- Joint Transmit and Pinching Beamforming for PASS: Optimization-Based or Learning-Based? [89.05848771674773]
A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.
It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)
The positions of PAs can be reconfigured to both spanning large-scale path and space.
arXiv Detail & Related papers (2025-02-12T18:54:10Z) - Optimal Switching Networks for Paired-Egress Bell State Analyzer Pools [0.3613661942047476]
nodes emit photons entangled with stationary memories, with the photons routed through a switched interconnect to a shared pool of Bell state analyzers (BSAs)
We present optimal designs for switched interconnects constrained to planar layouts, appropriate for silicon waveguides and Mach-Zehnder interferometer (MZI) $2 times 2$ switch points.
For pairing $N$ inputs, $N(N - 2)/4$ switches are required, which is less than half of number of switches required for full permutation switching networks.
arXiv Detail & Related papers (2024-05-16T07:38:34Z) - Procrustean entanglement concentration in quantum-classical networking [0.605746798865181]
We describe and experimentally implement Procrustean entanglement concentration for polarization-entangled states contaminated with classical light.
We demonstrate our technique both on the tabletop and over a deployed quantum local area network, finding a substantial improvement of two-qubit entangled state fidelity.
arXiv Detail & Related papers (2024-01-02T17:53:57Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Spiderweb array: A sparse spin-qubit array [0.04582374977939354]
One of the main bottlenecks in the pursuit of a large-scale--chip-based quantum computer is the large number of control signals needed to operate qubit systems.
Here, we discuss a quantum-dot spin-qubit architecture that integrates on-chip control electronics, allowing for a significant reduction in the number of signal connections at the chip boundary.
arXiv Detail & Related papers (2021-10-01T03:20:29Z) - Switch networks for photonic fusion-based quantum computing [0.0]
Fusion-based quantum computing (FBQC) offers a powerful approach to building a fault-tolerant universal quantum computer.
FBQC uses single-photon sources, linear-optical circuits, single-photon detectors, and optical switching with feedforward control.
New techniques and schemes enable major improvements in terms of muxing efficiency and reductions in hardware requirements.
arXiv Detail & Related papers (2021-09-28T14:31:30Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.