Computer-Aided Osteoporosis Diagnosis Using Transfer Learning with Enhanced Features from Stacked Deep Learning Modules
- URL: http://arxiv.org/abs/2412.09330v1
- Date: Thu, 12 Dec 2024 14:59:10 GMT
- Title: Computer-Aided Osteoporosis Diagnosis Using Transfer Learning with Enhanced Features from Stacked Deep Learning Modules
- Authors: Ayesha Siddiqua, Rakibul Hasan, Anichur Rahman, Abu Saleh Musa Miah,
- Abstract summary: Knee osteoporosis weakens the bone tissue in the knee joint, increasing fracture risk.
Early detection through X-ray images enables timely intervention and improved patient outcomes.
We propose a computer-aided diagnosis (CAD) system for knee osteoporosis, combining transfer learning with stacked feature enhancement deep learning blocks.
- Score: 6.398513051441461
- License:
- Abstract: Knee osteoporosis weakens the bone tissue in the knee joint, increasing fracture risk. Early detection through X-ray images enables timely intervention and improved patient outcomes. While some researchers have focused on diagnosing knee osteoporosis through manual radiology evaluation and traditional machine learning using hand-crafted features, these methods often struggle with performance and efficiency due to reliance on manual feature extraction and subjective interpretation. In this study, we propose a computer-aided diagnosis (CAD) system for knee osteoporosis, combining transfer learning with stacked feature enhancement deep learning blocks. Initially, knee X-ray images are preprocessed, and features are extracted using a pre-trained Convolutional Neural Network (CNN). These features are then enhanced through five sequential Conv-RELU-MaxPooling blocks. The Conv2D layers detect low-level features, while the ReLU activations introduce non-linearity, allowing the network to learn complex patterns. MaxPooling layers down-sample the features, retaining the most important spatial information. This sequential processing enables the model to capture complex, high-level features related to bone structure, joint deformation, and osteoporotic markers. The enhanced features are passed through a classification module to differentiate between healthy and osteoporotic knee conditions. Extensive experiments on three individual datasets and a combined dataset demonstrate that our model achieves 97.32%, 98.24%, 97.27%, and 98.00% accuracy for OKX Kaggle Binary, KXO-Mendeley Multi-Class, OKX Kaggle Multi-Class, and the combined dataset, respectively, showing an improvement of around 2% over existing methods.
Related papers
- Unsupervised Machine Learning for Osteoporosis Diagnosis Using Singh Index Clustering on Hip Radiographs [0.0]
Singh Index (SI) provides a straightforward, semi-quantitative means of osteoporosis diagnosis through plain hip radiographs.
This study aims to automate SI identification from radiographs using machine learning algorithms.
arXiv Detail & Related papers (2024-11-22T08:44:43Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
Multi-task Self-super-vised Continual Learning (MUSCLE) is a novel self-supervised pre-training pipeline for medical imaging tasks.
MUSCLE aggregates X-rays collected from multiple body parts for representation learning, and adopts a well-designed continual learning procedure.
We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection.
arXiv Detail & Related papers (2023-10-03T12:19:19Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Transfer Learning Enhanced Generative Adversarial Networks for
Multi-Channel MRI Reconstruction [3.5765797841178597]
Deep learning based generative adversarial networks (GAN) can effectively perform image reconstruction with under-sampled MR data.
It is difficult to obtain tens of thousands of raw patient data to train the model since saving k-space data is not in the routine clinical flow.
In this study, three novel applications were explored based on parallel imaging combined with the GAN model (PI-GAN) and transfer learning.
arXiv Detail & Related papers (2021-05-17T21:28:00Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - VoxelHop: Successive Subspace Learning for ALS Disease Classification
Using Structural MRI [30.469124322749828]
We present a subspace learning model, termed VoxelHop, for accurate classification of Amyotrophic Lateral Sclerosis (ALS)
Compared with popular convolutional neural network (CNN) architectures, VoxelHop has modular and transparent structures with fewer parameters without any backpropagation.
Our framework can easily be generalized to other classification tasks using different imaging modalities.
arXiv Detail & Related papers (2021-01-13T15:25:57Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.