論文の概要: Causal Graphical Models for Vision-Language Compositional Understanding
- arxiv url: http://arxiv.org/abs/2412.09353v1
- Date: Thu, 12 Dec 2024 15:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:47.267867
- Title: Causal Graphical Models for Vision-Language Compositional Understanding
- Title(参考訳): 視覚言語構成理解のための因果グラフモデル
- Authors: Fiorenzo Parascandolo, Nicholas Moratelli, Enver Sangineto, Lorenzo Baraldi, Rita Cucchiara,
- Abstract要約: 提案手法は, 最先端の合成手法を大きなマージンで大幅に上回っていることを示す。
さらに、はるかに大きなデータセットを使用してトレーニングされたメソッドよりも改善されている。
- 参考スコア(独自算出の注目度): 36.24185263818946
- License:
- Abstract: Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
- Abstract(参考訳): 近年の研究では、視覚言語モデル(VLM)が人間の言語の構成的特性を完全に理解し、イメージキャプションを「言葉の袋」としてモデル化するのに苦労していることが実証されている。
その結果、文(目的語、動詞など)の異なる実体を解き明かすためには、相互の関係を深く理解する必要がある。
本稿では、依存パーサを用いて構築された因果グラフモデル(CGM)を用いて、テキストおよびビジュアルトークン間の依存関係関係をモデル化し、VLMビジュアルエンコーダで条件付きデコーダを訓練する。
通常の自己回帰予測や並列予測とは異なり、デコーダの生成過程はCGM構造に従って部分的に順序付けされる。
この構造により、デコーダは文中の主要な因果関係のみを学習し、素因果関係を破棄する。
提案手法は,5つのコンポジションベンチマークに対する広範な実験により,最先端のコンポジションアプローチを大きなマージンで大幅に上回り,さらに,より大規模なデータセットを用いて訓練した手法よりも優れていることを示す。
関連論文リスト
- Object-centric Binding in Contrastive Language-Image Pretraining [9.376583779399834]
本稿では, 強陰性拡張の設計に依存した, 一般的な戦略から分岐する新しいアプローチを提案する。
本研究は,事前学習したCLIP様モデルに誘導バイアスを組み込むことにより,追加のハードネガティブを使わずに構成的理解を改善することに焦点を当てる。
得られたモデルは複雑なシーンのより正確でサンプル効率の良い画像テキストマッチングへの道を開く。
論文 参考訳(メタデータ) (2025-02-19T21:30:51Z) - Bridging Vision and Language: Modeling Causality and Temporality in Video Narratives [0.0]
本稿では,Causal-Temporal Reasoning Moduleを最先端のLVLMに統合する拡張フレームワークを提案する。
CTRMはCausal Dynamics(CDE)とTemporal Learner(TRL)の2つの重要なコンポーネントから構成される。
大規模ビデオテキストデータセットの事前学習を併用して,モデル最適化のための多段階学習戦略を設計する。
論文 参考訳(メタデータ) (2024-12-14T07:28:38Z) - ComAlign: Compositional Alignment in Vision-Language Models [2.3250871476216814]
コンポジションアライメント(ComAlign)を導入し、テキストと画像コンポーネントのより正確な対応を見出す。
本手法は, テキストのモダリティから抽出した構成構造も画像のモダリティに残さなければならないことを強調する。
私たちは、小さなデータセットを使用して、既存のビジュアルおよび言語エンコーダの上に横たわる軽量ネットワークをトレーニングします。
論文 参考訳(メタデータ) (2024-09-12T16:46:41Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
離散コードによるより強力な協調情報を用いて、コントラスト的なビューを構築することにより、グラフのコントラスト学習を強化することを目的とした、新しいフレームワークを提案する。
中心となる考え方は、ユーザとアイテムを協調情報に富んだ離散コードにマッピングし、信頼性と情報に富んだコントラッシブなビュー生成を可能にすることである。
論文 参考訳(メタデータ) (2024-09-09T14:04:17Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - 3VL: Using Trees to Improve Vision-Language Models' Interpretability [40.678288227161936]
VLM(Vision-Language Model)は、画像とテキストの表現の整列に有効であることが証明されており、多くの下流タスクに転送すると、より優れたゼロショット結果が得られる。
これらの表現は、オブジェクトの属性、状態、異なるオブジェクト間の関係を認識するなど、構成言語概念(CLC)を理解する際のいくつかの重要な欠点に悩まされる。
本稿では,木拡張ビジョンランゲージ(3VL)モデルのアーキテクチャとトレーニング手法を紹介する。
論文 参考訳(メタデータ) (2023-12-28T20:26:03Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
対照的に訓練された視覚言語モデルは、視覚と言語表現学習において顕著な進歩を遂げた。
近年の研究では、対象、属性、関係性に対して構成的推論を行う能力に厳しい制限が強調されている。
論文 参考訳(メタデータ) (2023-05-23T08:28:38Z) - Learning compositional structures for semantic graph parsing [81.41592892863979]
本稿では、AM依存性解析をニューラル潜在変数モデルで直接トレーニングする方法を示す。
本モデルでは,いくつかの言語現象を独自に把握し,教師あり学習に匹敵する精度を達成している。
論文 参考訳(メタデータ) (2021-06-08T14:20:07Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。