A comprehensive interpretable machine learning framework for Mild Cognitive Impairment and Alzheimer's disease diagnosis
- URL: http://arxiv.org/abs/2412.09376v1
- Date: Thu, 12 Dec 2024 15:45:21 GMT
- Title: A comprehensive interpretable machine learning framework for Mild Cognitive Impairment and Alzheimer's disease diagnosis
- Authors: Maria Eleftheria Vlontzou, Maria Athanasiou, Kalliopi Dalakleidi, Ioanna Skampardoni, Christos Davatzikos, Konstantina Nikita,
- Abstract summary: An interpretable machine learning framework is introduced to enhance the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD)
The dataset used comprises volumetric measurements from brain MRI and genetic data from healthy individuals and patients with MCI/AD.
The best performing model yielded 87.5% balanced accuracy and 90.8% F1-score.
- Score: 3.7475427099937355
- License:
- Abstract: An interpretable machine learning (ML) framework is introduced to enhance the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) by ensuring robustness of the ML models' interpretations. The dataset used comprises volumetric measurements from brain MRI and genetic data from healthy individuals and patients with MCI/AD, obtained through the Alzheimer's Disease Neuroimaging Initiative. The existing class imbalance is addressed by an ensemble learning approach, while various attribution-based and counterfactual-based interpretability methods are leveraged towards producing diverse explanations related to the pathophysiology of MCI/AD. A unification method combining SHAP with counterfactual explanations assesses the interpretability techniques' robustness. The best performing model yielded 87.5% balanced accuracy and 90.8% F1-score. The attribution-based interpretability methods highlighted significant volumetric and genetic features related to MCI/AD risk. The unification method provided useful insights regarding those features' necessity and sufficiency, further showcasing their significance in MCI/AD diagnosis.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning [0.0]
The rapid global aging trend has led to an increase in dementia cases, including Alzheimer's disease.
Traditional diagnostic techniques, such as cognitive tests, neuroimaging, and biomarker analysis, face significant limitations in sensitivity, accessibility, and cost.
This study explores the potential of machine learning (ML) as a transformative approach to enhance early dementia detection.
arXiv Detail & Related papers (2024-09-05T00:52:59Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide, encompassing a prodromal stage known as Mild Cognitive Impairment (MCI)
The objective of the work was to capture structural and functional modulations of brain structure and function relying on multimodal MRI data and Single Nucleotide Polymorphisms.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - HiMAL: A Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting and explaining Alzheimer disease progression [0.0]
HiMAL (Hierarchical, Multi-task Auxiliary Learning) framework was developed.
It predicts cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment to Alzheimer Disease.
arXiv Detail & Related papers (2024-04-04T05:30:03Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
We propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI)
We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities.
arXiv Detail & Related papers (2022-09-23T02:17:27Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Multimodal Attention-based Deep Learning for Alzheimer's Disease
Diagnosis [9.135911493822261]
Alzheimer's Disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses.
We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD.
arXiv Detail & Related papers (2022-06-17T15:10:00Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.