HiMAL: A Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting and explaining Alzheimer disease progression
- URL: http://arxiv.org/abs/2404.03208v2
- Date: Mon, 6 May 2024 03:02:55 GMT
- Title: HiMAL: A Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting and explaining Alzheimer disease progression
- Authors: Sayantan Kumar, Sean Yu, Andrew Michelson, Thomas Kannampallil, Philip Payne,
- Abstract summary: HiMAL (Hierarchical, Multi-task Auxiliary Learning) framework was developed.
It predicts cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment to Alzheimer Disease.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Objective: We aimed to develop and validate a novel multimodal framework HiMAL (Hierarchical, Multi-task Auxiliary Learning) framework, for predicting cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment (MCI) to Alzheimer Disease (AD). Methods: HiMAL utilized multimodal longitudinal visit data including imaging features, cognitive assessment scores, and clinical variables from MCI patients in the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset, to predict at each visit if an MCI patient will progress to AD within the next 6 months. Performance of HiMAL was compared with state-of-the-art single-task and multi-task baselines using area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. An ablation study was performed to assess the impact of each input modality on model performance. Additionally, longitudinal explanations regarding risk of disease progression were provided to interpret the predicted cognitive decline. Results: Out of 634 MCI patients (mean [IQR] age : 72.8 [67-78], 60% men), 209 (32%) progressed to AD. HiMAL showed better prediction performance compared to all single-modality singe-task baselines (AUROC = 0.923 [0.915-0.937]; AUPRC= 0.623 [0.605-0.644]; all p<0.05). Ablation analysis highlighted that imaging and cognition scores with maximum contribution towards prediction of disease progression. Discussion: Clinically informative model explanations anticipate cognitive decline 6 months in advance, aiding clinicians in future disease progression assessment. HiMAL relies on routinely collected EHR variables for proximal (6 months) prediction of AD onset, indicating its translational potential for point-of-care monitoring and managing of high-risk patients.
Related papers
- Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018.
A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy.
The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients.
arXiv Detail & Related papers (2024-10-02T03:21:01Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
Peritoneal Dialysis (PD) is one of the most widely used life-supporting therapies for patients with End-Stage Renal Disease (ESRD)
Here, our objective is to develop a deep learning model for a real-time, individualized, and interpretable mortality prediction model - AICare.
This study has collected 13,091 clinical follow-up visits and demographic data of 656 PD patients.
arXiv Detail & Related papers (2023-01-17T13:17:54Z) - AD-BERT: Using Pre-trained contextualized embeddings to Predict the
Progression from Mild Cognitive Impairment to Alzheimer's Disease [14.59521645987661]
We develop a deep learning framework based on the pre-trained Bidirectional Representations from Transformers (BERT) model.
We predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) using unstructured clinical notes.
arXiv Detail & Related papers (2022-11-07T04:05:46Z) - Comparison of single and multitask learning for predicting cognitive
decline based on MRI data [0.41998444721319217]
The Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) is a neuropsychological tool.
Prediction of the changes in ADAS-Cog scores could help in timing therapeutic interventions in dementia and at-risk populations.
The recommended method for learning the predictive models is a single-task regularized linear regression.
arXiv Detail & Related papers (2021-09-21T15:46:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.