Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer
- URL: http://arxiv.org/abs/2412.09417v1
- Date: Thu, 12 Dec 2024 16:25:10 GMT
- Title: Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer
- Authors: Adam Labiosa, Zhihan Wang, Siddhant Agarwal, William Cong, Geethika Hemkumar, Abhinav Narayan Harish, Benjamin Hong, Josh Kelle, Chen Li, Yuhao Li, Zisen Shao, Peter Stone, Josiah P. Hanna,
- Abstract summary: We develop a novel architecture integrating model-free reinforcement learning (RL) within a classical robotics stack.
Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division.
- Score: 25.161615988222934
- License:
- Abstract: Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.
Related papers
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - Solving Multi-Goal Robotic Tasks with Decision Transformer [0.0]
We introduce a novel adaptation of the decision transformer architecture for offline multi-goal reinforcement learning in robotics.
Our approach integrates goal-specific information into the decision transformer, allowing it to handle complex tasks in an offline setting.
arXiv Detail & Related papers (2024-10-08T20:35:30Z) - Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes [44.619927796194915]
Reinforcement learning (RL) has shown tremendous promise across a wide range of applications.
Robotics problems pose fundamental difficulties for the application of RL, stemming from the complexity and cost of interacting with the physical world.
This survey is designed to offer insights for both RL practitioners and roboticists toward harnessing RL's power to create generally capable real-world robotic systems.
arXiv Detail & Related papers (2024-08-07T04:35:38Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
Generation of diverse realistic scenarios is challenging for real-time strategy (RTS) environments.
Most of the existing simulators rely on randomly generating the environments.
We introduce the benefits of adopting an existing formal scenario specification language, SCENIC, to assist researchers.
arXiv Detail & Related papers (2021-06-18T21:49:46Z) - How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
Learned [111.06812202454364]
We present a number of case studies involving robotic deep RL.
We discuss commonly perceived challenges in deep RL and how they have been addressed in these works.
We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting.
arXiv Detail & Related papers (2021-02-04T22:09:28Z) - A Framework for Studying Reinforcement Learning and Sim-to-Real in Robot
Soccer [1.1785354380793065]
This article introduces an open framework, called VSSS-RL, for studying Reinforcement Learning (RL) and sim-to-real in robot soccer.
We propose a simulated environment in which continuous or discrete control policies can be trained to control the complete behavior of soccer agents.
Our results show that the trained policies learned a broad repertoire of behaviors that are difficult to implement with handcrafted control policies.
arXiv Detail & Related papers (2020-08-18T23:52:32Z) - The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems [0.0]
We describe the concept of Adversarial Learning (ARL) that formulates a new approach to complex environment checking and resilient operation.
The quintessence of ARL lies in both agents exploring the system and training each other without any domain knowledge.
Here, we introduce the ARL software architecture that allows to use a wide range of model-free as well as model-based DRL-based algorithms.
arXiv Detail & Related papers (2020-05-27T19:19:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.