Data Efficient Prediction of excited-state properties using Quantum Neural Networks
- URL: http://arxiv.org/abs/2412.09423v1
- Date: Thu, 12 Dec 2024 16:30:23 GMT
- Title: Data Efficient Prediction of excited-state properties using Quantum Neural Networks
- Authors: Manuel Hagelüken, Marco F. Huber, Marco Roth,
- Abstract summary: We present a quantum machine learning model that predicts excited-state properties from the molecular ground state.
The proposed procedure is fully NISQ compatible.
We show that the procedure is able to outperform various classical models that rely solely on classical features.
- Score: 4.7436936193373604
- License:
- Abstract: Understanding the properties of excited states of complex molecules is crucial for many chemical and physical processes. Calculating these properties is often significantly more resource-intensive than calculating their ground state counterparts. We present a quantum machine learning model that predicts excited-state properties from the molecular ground state for different geometric configurations. The model comprises a symmetry-invariant quantum neural network and a conventional neural network and is able to provide accurate predictions with only a few training data points. The proposed procedure is fully NISQ compatible. This is achieved by using a quantum circuit that requires a number of parameters linearly proportional to the number of molecular orbitals, along with a parameterized measurement observable, thereby reducing the number of necessary measurements. We benchmark the algorithm on three different molecules by evaluating its performance in predicting excited state transition energies and transition dipole moments. We show that, in many instances, the procedure is able to outperform various classical models that rely solely on classical features.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Learning quantum properties from short-range correlations using multi-task networks [3.7228085662092845]
We introduce a neural network model that can predict various quantum properties of many-body quantum states with constant correlation length.
The model is based on the technique of multi-task learning, which we show to offer several advantages over traditional single-task approaches.
arXiv Detail & Related papers (2023-10-18T08:53:23Z) - Autoregressive Neural Quantum States with Quantum Number Symmetries [0.6215404942415159]
We develop a framework to make the autoregressive sampling compliant with an arbitrary number of quantum number symmetries.
We showcase its advantages by running electronic structure calculations for a range of molecules with multiple symmetries.
arXiv Detail & Related papers (2023-10-06T11:29:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
Entanglement is a key property in the development of quantum technologies.
We present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians.
arXiv Detail & Related papers (2022-09-18T08:15:49Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.